"One very important genus of complex ideas that we encounter everywhere are those in which the idea of collection (Inbegriff ) appears. There are many types of the latter [...] I must first determine with more precision the concept I associate with the word collection. I use this word in the same sense as it is used in the common usage and thus understand by a collection of certain things exactly the same as what one would express by the words: a combination (Verbindung) or association (Vereinigung) of these things, a gathering (Zusammensein) of the latter, a whole (Ganzes) in which they occur as parts (Teile). Hence the mere idea of a collection does not allow us to determine in which order and sequence the things that are put together appear or, indeed, whether there is or can be such an order. [...] A collection, it seems to me, is nothing other than something complex (das Zusammengesetztheit hat)." (Bernard Bolzano, "Wissenschaftslehre" ["Theory of Science"], 1837)
"The old and oft-repeated proposition 'Totum est majus sua parte' [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts 'totum' and 'pars'. Unfortunately, however, this 'axiom' is used innumerably often without any basis and in neglect of the necessary distinction between 'reality' and 'quantity' , on the one hand, and 'number' and 'set', on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)
"The foregoing account of my researches in the theory of manifolds has reached a point where further progress depends on extending the concept of true integral number beyond the previous boundaries; this extension lies in a direction which, to my knowledge, no one has yet attempted to explore.
My dependence on this extension of number concept is so great, that without it I should be unable to take freely the smallest step further in the theory of sets." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)
"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)
"Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. [...] The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it [...] the language and notation are those of ordinary informal mathematics. A more important way in which the naive point of view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study." (Paul R Halmos, "Naive Set Theory", 1960)
"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive."
"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"Does set theory, once we get beyond the integers, refer to an existing reality, or must it be regarded, as formalists would regard it, as an interesting formal game? [...] A typical argument for the objective reality of set theory is that it is obtained by extrapolation from our intuitions of finite objects, and people see no reason why this has less validity. Moreover, set theory has been studied for a long time with no hint of a contradiction. It is suggested that this cannot be an accident, and thus set theory reflects an existing reality. In particular, the Continuum Hypothesis and related statements are true or false, and our task is to resolve them." (Paul Cohen, "Skolem and pessimism about proof in mathematics", Philosophical Transactions of the Royal Society A 363 (1835), 2005)
"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)
No comments:
Post a Comment