"The first step in beginning the scientific study of a problem is to collect the data, which are or ought to be 'facts'." (John A Thomson, "Introduction to Science", 1911)
"[...] it is a function of statistical method to emphasize that precise conclusions cannot be drawn from inadequate data." (Egon S Pearson & H Q Hartley, "Biometrika Tables for Statisticians" Vol. 1, 1914)
"This diagrammatic method has, however, serious inconveniences as a method for solving logical problems. It does not show how the data are exhibited by cancelling certain constituents, nor does it show how to combine the remaining constituents so as to obtain the consequences sought. In short, it serves only to exhibit one single step in the argument, namely the equation of the problem; it dispenses neither with the previous steps, i.e., 'throwing of the problem into an equation' and the transformation of the premises, nor with the subsequent steps, i.e., the combinations that lead to the various consequences. Hence it is of very little use, inasmuch as the constituents can be represented by algebraic symbols quite as well as by plane regions, and are much easier to deal with in this form." (Louis Couturat, "The Algebra of Logic", 1914)
"As soon as science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms. We call such a system of thought a theory. The theory finds the justification for its existence in the fact that it correlates a large number of single observations, and it is just here that the 'truth' of the theory lies." (Albert Einstein: "Relativity: The Special and General Theory", 1916)
No comments:
Post a Comment