02 January 2026

On Number Theory (1950-1974)

"On the basis of what has been proved so far, it remains possible that there may exist (and even be empirically discoverable) a theorem-proving machine which in fact is equivalent to mathematical intuition, but cannot be proved to be so, nor even be proved to yield only correct theorems of finitary number theory." (Kurt Gödel, 1951)

"The theory of numbers is particularly liable to the accusation that some of its problems are the wrong sort of questions to ask. I do not myself think the danger is serious; either a reasonable amount of concentration leads to new ideas or methods of obvious interest, or else one just leaves the problem alone. ‘Perfect numbers’ certainly never did any good, but then they never did any particular harm." (John E Littlewood, "A Mathematician’s Miscellany", 1953)

"The mathematical theory of continuity is based, not on intuition, but on the logically developed theories of number and sets of points." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"The modern era has uncovered for combinatorics a wide range of fascinating new problems. These have arisen in abstract algebra, topology, the foundations of mathematics, graph theory, game theory, linear programming, and in many other areas. Combinatorics has always been diversified. During our day this diversification has increased manifold. Nor are its many and varied problems successfully attacked in terms of a unified theory. Much of what we have said up to now applies with equal force to the theory of numbers. In fact, combinatorics and number theory are sister disciplines. They share a certain intersection of common knowledge, and each genuinely enriches the other." (Herbert J Ryser, "Combinatorial Mathematics", 1963)

"No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integerst hat refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are ‘undecidable’. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Number Theory (2000-)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathemat...