24 January 2026

On Analysis: On Infinitesimals (1750-1799)

"Any change involves at least two conditions, one preceding and one following, which are distinct from one another in such a way that the difference between the former and the latter can be established. Now the law of continuity prohibits the thing which is being changed to transcend abruptly from the former to the latter. It must pass through an intermediate condition which is as little distinct from the previous as from the subsequent one. And because the difference between this intermediate condition and the previous condition can be established still, there must be an intermediate condition between these two as well, and this must continue in the same way, until the difference between the previous condition and the one immediately succeeding it vanishes. As long as the set of these intermediate conditions can be established, every difference between one and the next can be established as well: hence their set must become larger than any given set if these differences shall vanish, and thus we imagine infinitely many conditions where one differs from the next to an infinitely small degree." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" ["Beginnings of the Analysis of the Infinite"], 1766)

"It is held because of this law in particular, that no change may occur suddenly, but rather that every change always passes by infinitely small stages, of which the trajectory of a point in a curved line provides a first example." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" ["Beginnings of the Analysis of the Infinite"], 1766)

"When we have grasped the spirit of the infinitesimal method, and have verified the exactness of its results either by the geometrical method of prime and ultimate ratios, or by the analytical method of derived functions, we may employ infinitely small quantities as a sure and valuable means of  shortening and simplifying our proofs." (Joseph-Louis de Lagrange, "Mechanique Analytique", 1788)

"At the time the book of Marquis de l'Hôpital had appeared, and almost all mathematicians began to turn to the new geometry of the infinite [that is, the new infinitesimal calculus], until then little known. The surprising universality of the methods, the elegant brevity of the proofs, the neatness and speed of the most difficult solutions, a singular and unexpected novelty, all attracted the mind and there was in the mathematical world a well marked revolution [une révolution bien marquée." (Bernard Le Bovier de Fontenelle, 1792) 

"The infinitely smallest part of space is always a space, something endowed with continuity, not at all a mere point or the boundary between specified places in space." (Johann G Fichte, "Grundriss des Eigenthümlichen der Wissenschaftslehre in Rücksicht auf das theoretische Vermögen", 1795)

"It appears that Fermat, the true inventor of the differential calculus, considered that calculus as derived from the calculus of finite differences by neglecting infinitesimals of higher orders as compared with those of a lower order [...] Newton, through his method of fluxions, has since rendered the calculus more analytical, he also simplified and generalized the method by the invention of his binomial theorem. Leibnitz has enriched the differential calculus by a very happy notation." (Pierre-Simon Laplace, "Exposition du système du monde" ["Exposition of the System of the World"], 1796)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Analysis: On Infinitesimals (1925-1949)

"Most sciences progress by pursuing nature into the realms of infinitely small, but for astronomy and cosmogony progress lies in the di...