"In mathematical models, a bifurcation occurs when a small change made to a parameter value of a system causes a sudden qualitative or topological change in its behavior." (Dmitriy Laschov & Michael Margaliot, "Mathematical Modeling of the λ Switch: A Fuzzy Logic Approach", 2010)
"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)
"There are actually two sides to the success of mathematics in explaining the world around us (a success that Wigner dubbed ‘the unreasonable effectiveness of mathematics’), one more astonishing than the other. First, there is an aspect one might call ‘active’. When physicists wander through nature’s labyrinth, they light their way by mathematics - the tools they use and develop, the models they construct, and the explanations they conjure are all mathematical in nature. This, on the face of it, is a miracle in itself. […] But there is also a ‘passive’ side to the mysterious effectiveness of mathematics, and it is so surprising that the 'active' aspect pales by comparison. Concepts and relations explored by mathematicians only for pure reasons - with absolutely no application in mind - turn out decades (or sometimes centuries) later to be the unexpected solutions to problems grounded in physical reality!" (Mario Livio, "Is God a Mathematician?", 2011)
"A catastrophe is a universal unfolding of a singular function germ. The singular function germs are called organization centers of the catastrophes. [...] Catastrophe theory is concerned with the mathematical modeling of sudden changes - so called 'catastrophes' - in the behavior of natural systems, which can appear as a consequence of continuous changes of the system parameters. While in common speech the word catastrophe has a negative connotation, in mathematics it is neutral." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])
"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])
"Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models. If you cannot answer the homogeneity question, then you will not know if you have one probability model or many. [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)
"Models do not and need not match reality in all of its aspects and details to be adequate. A mathematical model is usually developed for a specific class of target systems, and its validity is determined relative to its intended applications. A model is considered valid within its intended domain of applicability provided that its predictions in that domain fall within an acceptable range of error, specified prior to the model’s development or identification." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])
"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. [...] Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models. [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)
"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"Mathematical modeling is a mixed blessing for economics. Mathematical modeling provides real advantages in terms of precision of thought, in seeing how assumptions are linked to conclusions, in generating and communicating insights, in generalizing propositions, and in exporting knowledge from one context to another. In my opinion, these advantages are monumental, far outweighing the costs. But the costs are not zero. Mathematical modeling limits what can be tackled and what is considered legitimate inquiry. You may decide, with experience, that the sorts of models in this book do not help you understand the economic phenomena that you want to understand." (David M Kreps, "Microeconomic Foundations I: Choice and Competitive Markets", 2013)
"Mathematical symmetry is an idealized model. However, slightly imperfect symmetry requires explanation; it’s not enough just to say ‘it’s asymmetric’." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)
"To put it simply, we communicate when we display a convincing pattern, and we discover when we observe deviations from our expectations. These may be explicit in terms of a mathematical model or implicit in terms of a conceptual model. How a reader interprets a graphic will depend on their expectations. If they have a lot of background knowledge, they will view the graphic differently than if they rely only on the graphic and its surrounding text." (Andrew Gelman & Antony Unwin, "Infovis and Statistical Graphics: Different Goals, Different Looks", Journal of Computational and Graphical Statistics Vol. 22(1), 2013)
"When confronted with multiple models, I find it revealing to pose the resulting uncertainty as a two-stage lottery. For the purposes of my discussion, there is no reason to distinguish unknown models from unknown parameters of a given model. I will view each parameter configuration as a distinct model. Thus a model, inclusive of its parameter values, assigns probabilities to all events or outcomes within the model’s domain. The probabilities are often expressed by shocks with known distributions and outcomes are functions of these shocks. This assignment of probabilities is what I will call risk. By contrast there may be many such potential models. Consider a two-stage lottery where in stage one we select a model and in stage two we draw an outcome using the model probabilities. Call stage one model ambiguity and stage two risk that is internal to a model." (Lars P Hansen, "Uncertainty Outside and Inside Economic Models", [Nobel lecture] 2013)
“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)
"Different models serve different purposes. Setting up a model involves focusing on features of the phenomenon that are compatible with the methodology being proposed, and neglecting features that are not compatible with it. A mathematical model in applied science explicitly refrains from attempting to be a complete picture of the phenomenon being modeled." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)
"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)
No comments:
Post a Comment