"[…] even if someone refuses to admit infinite and infinitesimal lines in a rigorous metaphysical sense and as real things, he can still use them with confidence as ideal concepts (notions ideales) which shorten his reasoning, similar to what we call imaginary roots in the ordinary algebra, for example, √-2." (Gottfried W Leibniz, [letter to Varignon], 1702)
"Of late the speculations about Infinities have run so high, and grown to such strange notions, as have occasioned no small scruples and disputes among the geometers of the present age. Some there are of great note who, not contented with holding that finite lines may be divided into an infinite number of parts, do yet further maintain that each of these infinitesimals is itself subdivisible into an infinity of other parts or infinitesimals of a second order, and so on ad infinitum. These I say assert there are infinitesimals of infinitesimals, etc., without ever coming to an end; so that according to them an inch does not barely contain an infinite number of parts, but an infinity of an infinity of an infinity ad infinitum of parts." (George Berkeley, "The Principles of Human Knowledge', 1710)
"In fact, a similar principle of hardness cannot exist; it is a chimera which offends that general law which nature constantly observes in all its operations; I speak of that immutable and perpetual order, established since the creation of the Universe, that can be called the LAW OF CONTINUITY, by virtue of which everything that takes place, takes place by infinitely small degrees. It seems that common sense dictates that no change can take place at a jump; natura non operatur per saltion; nothing can pass from one extreme to the other without passing through all the degrees in between." (Johann Bernoulli, "Discours sur les Loix de la Communication du Mouvement", 1727)
"The calculus is to mathematics no more than what experiment is to physics, and all the truths produced solely by the calculus can be treated as truths of experiment. The sciences must proceed to first causes, above all mathematics where one cannot assume, as in physics, principles that are unknown to us. For there is in mathematics, so to speak, only what we have placed there […] If, however, mathematics always has some essential obscurity that one cannot dissipate, it will lie, uniquely, I think, in the direction of the infinite; it is in that direction that mathematics touches on physics, on the innermost nature of bodies about which we know little." (Bernard Le Bovier de Fontenelle, "Elements de la géométrie de l'infini", 1727)
"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire, "Letters on the English", 1733)
"And yet in the calculus differentialis, which method serves to all the same intents and ends with that of fluxions, our modern analysts are not content to consider only the differences of finite quantities: they also consider the differences of those differences, and the differences of the differences of the first differences. And so on ad infinitum. That is, they consider quantities infinitely less than the least discernible quantity; and others infinitely less than those infinitely small ones; and still others infinitely less than the preceding infinitesimals, and so on without end or limit. Insomuch that we are to admit an infinite succession of infinitesimals, each infinitely less than the foregoing, and infinitely greater than the following. As there are first, second, third, fourth, fifth, &c. fluxions, so there are differences, first, second, third, fourth, &c., in an infinite progression towards nothing, which you still approach and never arrive at. And (which is most strange) although you should take a million of millions of these infinitesimals, each whereof is supposed infinitely greater than some other real magnitude, and add them to the least given quantity, it shall never be the bigger. For this is one of the modest postulata of our modern mathematicians, and is a cornerstone or ground-work of their speculations." (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)
"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities? [...] The method of Fluxions is the general key by help whereof the modern mathematicians unlock the secrets of Geometry, and consequently of Nature." (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)
"The foreign mathematicians are supposed by some, even of our own, to proceed in a manner less accurate, perhaps, and geometrical, yet more intelligible. Instead of flowing quantities and their fluxons, they consider the variable finite quantities as increasing or diminishing by the continual addition or subduction of infinitely small quantities. Instead of the velocities wherewith increments are generated, they consider the increments or decrements themselves, which they call differences, and which are supposed to be infinitely small. The difference of a line is an infinitely little line; of a plane an infinitely little plane. They suppose finite quantities to consist of parts infinitely little, and curves to be polygons, whereof the sides are infinitely little, which by the angles they make one with another determine the curvity of the line. Now to conceive a quantity infinitely small, that is, infinitely less than any sensible or imaginable quantity, or than any the least finite magnitude is, I confess, above my capacity. But to conceive a part of such infinitely small quantity that shall be still infinitely less than it, and consequently though multiplied infinitely shall never equal the minutest finite quantity, is, I suspect, an infinite difficulty to any man whatsoever; and will be allowed such by those who candidly say what they think; provided they really think and reflect, and do not take things upon trust." (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)
No comments:
Post a Comment