24 January 2026

Jean-Baptiste-Joseph Fourier - Direct Perspectives

"It is true that Fourier had the opinion that the principal object of mathematics was public use and the explanation of natural phenomena; but a philosopher like him ought to know that the sole object of the science is the honor of the human spirit and that under this view a problem of [the theory of] numbers is worth as much as a problem on the system of the world." (Carl G J Jacobi [letter to Adrien-Marie Legendre], 1830)

"Nearly fifty years had passed without any progress on the question of analytic representation of an arbitrary function, when an assertion of Fourier threw new light on the subject. Thus a new era began for the development of this part of Mathematics and this was heralded in a stunning way by major developments in mathematical Physics." (Bernhard Riemann, 1854)

"Since Fermat introduced the conception of infinitely small differences between consecutive values of a function and arrived at the principle for finding the maxima and minima, it was maintained by Lagrange, Laplace, and Fourier, that Fermat may be regarded as the first inventor of the differential calculus. This point is not well taken, as will be seen from the words of Poisson, himself a Frenchman, who rightly says that the differential calculus "consists in a system of rules proper for finding the differentials of all functions, rather than in the use which may be made of these infinitely small variations in the solution of one or two isolated problems." (Florian Cajori, "A History of Mathematics", 1893)

"It is not surprising, in view of the polydynamic constitution of the genuinely mathematical mind, that many of the major heros of the science, men like Desargues and Pascal, Descartes and Leibnitz, Newton, Gauss and Bolzano, Helmholtz and Clifford, Riemann and Salmon and Plücker and Poincaré, have attained to high distinction in other fields not only of science but of philosophy and letters too. And when we reflect that the very greatest mathematical achievements have been due, not alone to the peering, microscopic, histologic vision of men like Weierstrass, illuminating the hidden recesses, the minute and intimate structure of logical reality, but to the larger vision also of men like Klein who survey the kingdoms of geometry and analysis for the endless variety of things that flourish there, as the eye of Darwin ranged over the flora and fauna of the world, or as a commercial monarch contemplates its industry, or as a statesman beholds an empire; when we reflect not only that the Calculus of Probability is a creation of mathematics but that the master mathematician is constantly required to exercise judgment. - judgment, that is, in matters not admitting of certainty - balancing probabilities not yet reduced nor even reducible perhaps to calculation; when we reflect that he is called upon to exercise a function analogous to that of the comparative anatomist like Cuvier, comparing theories and doctrines of every degree of similarity and dissimilarity of structure; when, finally, we reflect that he seldom deals with a single idea at a tune, but is for the most part engaged in wielding organized hosts of them, as a general wields at once the division of an army or as a great civil administrator directs from his central office diverse and scattered but related groups of interests and operations; then, I say, the current opinion that devotion to mathematics unfits the devotee for practical affairs should be known for false on a priori grounds. And one should be thus prepared to find that as a fact Gaspard Monge, creator of descriptive geometry, author of the classic Applications de l’analyse à la géométrie; Lazare Carnot, author of the celebrated works, Géométrie de position, and Réflections sur la Métaphysique du Calcul infinitesimal; Fourier, immortal creator of the Théorie analytique de la chaleur; Arago, rightful inheritor of Monge’s chair of geometry; Poncelet, creator of pure projective geometry; one should not be surprised, I say, to find that these and other mathematicians in a land sagacious enough to invoke their aid, rendered, alike in peace and in war, eminent public service." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

"Why are nonlinear systems so much harder to analyze than linear ones? The essential difference is that linear systems can be broken down into parts. Then each part can be solved separately and finally recombined to get the answer. This idea allows a fantastic simplification of complex problems, and underlies such methods as normal modes, Laplace transforms, superposition arguments, and Fourier analysis. In this sense, a linear system is precisely equal to the sum of its parts." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"To understand, how noise is related to scale-freeness, we have to do some mathematics again. Noise is usually characterized by a mathematical trick. The seemingly random fluctuation of the signal is regarded as a sum of sinusoidal waves. The components of the million waves giving the final noise structure are characterized by their frequency. To describe noise, we plot the contribution (called spectral density) of the various waves we use to model the noise as a function of their frequency. This transformation is called a Fourier transformation [...]" (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"It has been said that the three most effective problem-solving devices in mathematics are calculus, complex variables, and the Fourier transform." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"The significance of Fourier’s theorem to music cannot be overstated: since every periodic vibration produces a musical sound (provided, of course, that it lies within the audible frequency range), it can be broken down into its harmonic components, and this decomposition is unique; that is, every tone has one, and only one, acoustic spectrum, its harmonic fingerprint. The overtones comprising a musical tone thus play a role somewhat similar to that of the prime numbers in number theory: they are the elementary building blocks from which all sound is made." (Eli Maor, "Music by the Numbers: From Pythagoras to Schoenberg", 2018)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Jean-Baptiste-Joseph Fourier - Direct Perspectives

"It is true that Fourier had the opinion that the principal object of mathematics was public use and the explanation of  natural phenom...