02 January 2026

On Number Theory (1975-1999)

"The theory of number is the epipoem of mathematics." (Scott Buchanan, "Poetry and Mathematics", 1975)

"[Number theory] produces, without effort, innumerable problems which have a sweet, innocent air about them, tempting flowers; and yet…number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!" (Barry Mazur, "Number Theory as Gadfly", The American Mathematical Monthly, Volume 98, 1991)

"[…] number theory […] is a field of almost pristine irrelevance to everything except the wondrous demonstration that pure numbers, no more substantial than Plato’s shadows, conceal magical laws and orders that the human mind can discover after all." (Sharon Begley, "New Answer for an Old Question", Newsweek, 5 July, 1993)

"Number theory [...] is a field of almost pristine irrelevance to everything except the wondrous demonstration that pure numbers, no more substantial than Plato's shadows, conceal magical laws and orders that the human mind can discover after all." (Sharon Begley, "New Answer for an Old Question", Newsweek, 1993)

"At first glance the theory of numbers is deprived of any geometricity. But this is actually not the case. At the contemporary stage of development of computers it has become possible to explain to a wide range of readers that visual geometry helps not only to illustrate some abstract situations from the number theory, but sometimes also to solve new problems." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Modem geometry and topology take a special place in mathematics because many of the objects they deal with are treated using visual methods. […] Each mathematician has his own system of concepts of the intrinsic geometry of his (specific) mathematical world and visual images which he associated with some or other abstract concepts of mathematics (including algebra, number theory, analysis, etc.). It is noteworthy that sometimes one and the same abstraction brings about the same visual picture in different mathematicians, but these pictures born by imagination are in most cases very difficult to represent graphically, so to say, to draw." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Number theory is so difficult, albeit so fascinating, because mathematicians try to examine additive creations under a multiplicative light." (William Dunham, 1994)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Number Theory (2000-)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathemat...