27 January 2026

On Problem Solving: On Paths

"Having gotten, with God’s help, to the very desired place, i.e. the mother of all cases called by the people 'the rule of the thing' or the 'Greater Art', i.e. speculative practice; otherwise called Algebra and Almucabala in the Arab language or Chaldean according to some, which in our [language] amounts to saying 'restaurationis et oppositionis', Algebra id est Restau­ ratio. Almucabala id est Oppositio vel contemptio et Solutio, because by this path one solves infinite questions. And one picks out those which cannot yet be solved." (Luca Pacioli, "Summa de arithmetica geometria proportioni et proportionalita", 1494)

"Systems in physical science […] are no more than appropriate instruments to aid the weakness of our organs: they are, properly speaking, approximate methods which put us on the path to the solution of the problem; these are the hypotheses which, successively modified, corrected, and changed in proportion as they are found false, should lead us infallibly one day, by a process of exclusion, to the knowledge of the true laws of nature." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology." (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol. 64, 1975)

"In the real world, none of these assumptions are uniformly valid. Often people want to know why mathematics and computers cannot be used to handle the meaningful problems of society, as opposed, let us say, to the moon boondoggle and high energy-high cost physics. The answer lies in the fact that we don't know how to describe the complex systems of society involving people, we don't understand cause and effect, which is to say the consequences of decisions, and we don't even know how to make our objectives reasonably precise. None of the requirements of classical science are met. Gradually, a new methodology for dealing with these 'fuzzy' problems is being developed, but the path is not easy." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"It is actually impossible in theory to determine exactly what the hidden mechanism is without opening the box, since there are always many different mechanisms with identical behavior. Quite apart from this, analysis is more difficult than invention in the sense in which, generally, induction takes more time to perform than deduction: in induction one has to search for the way, whereas in deduction one follows a straightforward path." (Valentino Braitenberg, "Vehicles: Experiments in Synthetic Psychology", 1984)

"When a book is being written, it is a maze of possibilities, most of which are never realised. Reading the resulting book, once all decisions have been taken, is like tracing one particular path through that maze. The writer's job is to choose that path, define it clearly, and make it as smooth as possible for those who follow. Mathematics is much the same. Mathematical ideas form a network. The interconnections between ideas are logical deductions. If we assume this, then that must follow - a logical path from this to that. When mathematicians try to understand a problem, they have to thread a maze of logic. The body of knowledge that we call mathematics is a catalogue of interesting excursions through the logical maze."(Ian Stewart, "The Magical Maze: Seeing the world through mathematical eyes", 1997)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Monte Carlo is able to discover practical solutions to otherwise intractable problems because the most efficient search of an unmapped territory takes the form of a random walk. Today’s search engines, long descended from their ENIAC-era ancestors, still bear the imprint of their Monte Carlo origins: random search paths being accounted for, statistically, to accumulate increasingly accurate results. The genius of Monte Carlo - and its search-engine descendants - lies in the ability to extract meaningful solutions, in the face of overwhelming information, by recognizing that meaning resides less in the data at the end points and more in the intervening paths." (George B Dyson, "Turing's Cathedral: The Origins of the Digital Universe", 2012)

"The genius of Monte Carlo - and its search-engine descendants - lies in the ability to extract meaningful solutions, in the face of overwhelming information, by recognizing that meaning resides less in the data at the end points and more in the intervening paths." (George B Dyson, "Turing's Cathedral: The Origins of the Digital Universe", 2012)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Problem Solving: On Paths

"Having gotten, with God’s help, to the very desired place, i.e. the mother of all cases called by the people 'the rule of the thin...