01 January 2026

On Proofs (-499)

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"It is evidently equally foolish to accept probable reasoning from a mathematician and to demand from a rhetorician demonstrative proofs." (Aristotle, cca. 4th century BC)

"Now analysis is of two kinds, the one directed to searching for the truth and called theoretical, the other directed to finding what we are told to find and called problematical. (1) In the theoretical kind we assume what is sought as if it were existent and true, after which we pass through its successive consequences, as if they too were true and established by virtue of our hypothesis, to something admitted: then (a), if that something admitted is true, that which is sought will also be true and the proof will correspond in the reverse order to the analysis, but (b), if we come upon something admittedly false, that which is sought will also be false. (2) In the problematical kind we assume that which is propounded as if it were known, after which we pass through its successive consequences, taking them as true, up to something admitted: if then (a) what is admitted is possible and obtainable, that is, what mathematicians call given, what was originally proposed will also be possible, and the proof will again correspond in reverse order to the analysis, but if (b) we come upon something admittedly impossible, the problem will also be impossible." (Pappus of Alexandria, cca. 4th century BC)

"It is of course easier to supply the proof when we have previously acquired some knowledge of the questions by the method, than it is to find it without any previous knowledge." (Archimedes, cca. 3rd century BC)

"Those who claim to discover everything but produce no proofs of the same may be confuted as having actually pretended to discover the impossible." (Archimedes, "On Spirals", cca. 225 BC)

"It is not possible to find in all geometry more difficult and more intricate questions or more simple and lucid explanations [than those given by Archimedes]. Some ascribe this to his natural genius; while others think that incredible effort and toil produced these, to all appearance, easy and unlaboured results. No amount of investigation of yours would succeed in attaining the proof, and yet, once seen, you immediately believe you would have discovered it; by so smooth and so rapid a path he leads you to the conclusion required." (Plutarch, cca. 1st century)

"Analysis is the obtaining of the thing sought by assuming it and so reasoning up to an admitted truth; synthesis is the obtaining of the thing sought by reasoning up to the inference and proof of it." (Eudoxus, cca. 4th century BC)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Structures: On Mazes

"The confirmed prejudices of a thoughtful life are as hard to change as the confirmed habits of an indolent life; and as some must trif...