24 January 2026

On Calculus: On Fluxions

"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?" (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)

"And yet in the calculus differentialis, which method serves to all the same intents and ends with that of fluxions, our modern analysts are not content to consider only the differences of finite quantities: they also consider the differences of those differences, and the differences of the differences of the first differences. And so on ad infinitum. That is, they consider quantities infinitely less than the least discernible quantity; and others infinitely less than those infinitely small ones; and still others infinitely less than the preceding infinitesimals, and so on without end or limit. Insomuch that we are to admit an infinite succession of infinitesimals, each infinitely less than the foregoing, and infinitely greater than the following. As there are first, second, third, fourth, fifth, &c. fluxions, so there are differences, first, second, third, fourth, &c., in an infinite  progression towards nothing, which you still approach and never arrive at. And (which is most strange) although you should take a million of millions of these infinitesimals, each whereof is supposed infinitely greater than some other real magnitude, and add them to the least given quantity, it shall never be the bigger. For this is one of the modest postulata of our modern mathematicians, and is a cornerstone or ground-work of their speculations."  (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)

"He who can digest a second or third fluxion, a second or third difference, need not, we think, be squeamish about any point of divinity." (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)

"The foreign mathematicians are supposed by some, even of our own, to proceed in a manner less accurate, perhaps, and geometrical, yet more intelligible. Instead of flowing quantities and their fluxons, they consider the variable finite quantities as increasing or diminishing by the continual addition or subduction of infinitely small quantities. Instead of the velocities wherewith increments are generated, they consider the increments or decrements themselves, which they call differences, and which are supposed to be infinitely small. The difference of a line is an infinitely little line; of a plane an infinitely little plane. 

"The method of Fluxions is the general key by help whereof the modern mathematicians unlock the secrets of Geometry, and consequently of Nature." (George Berkeley, "The Analyst: A Discourse Addressed to an Infidel Mathematician...", 1734)

"Newton started out from another principle; and one can say that the metaphysics of this great mathematician on the calculus of fluxions is very exact and illuminating, even though he allowed us only an imperfect glimpse of his thoughts. He never considered the differential calculus as the study of infinitely small quantities, but as the method of first and ultimate ratios, that is to say, the method of finding the limits of ratios. Thus this famous author has never differentiated quantities but only equations; in fact, every equation involves a relation between two variables and the differentiation of equations consists merely in finding the limit of the ratio of the finite differences of the two quantitiescontained in the equation." (Jean LeRond D'Alembert, "Differentiel" ["Differentials", 1754)

"It appears that Fermat, the true inventor of the differential calculus, considered that calculus as derived from the calculus of finite differences by neglecting infinitesimals of higher orders as compared with those of a lower order [...] Newton, through his method of fluxions, has since rendered the calculus more analytical, he also simplified and generalized the method by the invention of his binomial theorem. Leibnitz has enriched the differential calculus by a very happy notation." (Pierre-Simon Laplace, "Exposition du système du monde" ["Exposition of the System of the World"], 1796)

"This great geometrician expresses by the character E the increment of the abscissa; and considering only the first power of this increment, he determines exactly as we do by differential calculus the subtangents of the curves, their points of inflection, the maxima and minima of their ordinates, and in general those of rational functions. We see likewise by his beautiful solution of the problem of the refraction of light inserted in the Collection of the Letters of Descartes that he knows how to extend his methods to irrational functions in freeing them from irrationalities by the elevation of the roots to powers. Fermat should be regarded, then, as the true discoverer of Differential Calculus. Newton has since rendered this calculus more analytical in his Method of Fluxions, and simplified and generalized the processes by his beautiful theorem of the binomial. Finally, about the same time Leibnitz has enriched differential calculus by a notation which, by indicating the passage from the finite to the infinitely small, adds to the advantage of expressing the general results of calculus, that of giving the first approximate values of the differences and of the sums of the quantities; this notation is adapted of itself to the calculus of partial differentials." (Pierre-Simon Laplace, "Essai philosophique sur le calcul des probabilities", 1812)

"Every man is ready to join in the approval or condemnation of a philosopher or a statesman, a poet or an orator, an artist or an architect. But who can judge of a mathematician? Who will write a review of Hamilton’s Quaternions, and show us wherein it is superior to Newton’s Fluxions?" (Thomas Hill, 'Imagination in Mathematics', North American Review 85, 1857)

"In reality the origin of the notion of derivatives is in the vague feeling of the mobility of things, and of the greater or less speed with which phenomena take place; this is well expressed by the terms fluent and fluxion, which were used by Newton and which we may believe were borrowed from the ancient mathematician Heraclitus." (Émile Picard, [address to the section of Algebra and Analysis] 1904)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Jean-Baptiste-Joseph Fourier - Direct Perspectives

"It is true that Fourier had the opinion that the principal object of mathematics was public use and the explanation of  natural phenom...