26 January 2026

On Galileo Galilei - Historical Perspectives

"We pass with admiration along the great series of mathematicians, by whom the science of theoretical mechanics has been cultivated, from the time of Newton to our own. There is no group of men of science whose fame is higher or brighter. The great discoveries of Copernicus, Galileo, Newton, had fixed all eyes on those portions of human knowledge on which their successors employed their labors. The certainty belonging to this line of speculation seemed to elevate mathematicians above the students of other subjects; and the beauty of mathematical relations and the subtlety of intellect which may be shown in dealing with them, were fitted to win unbounded applause. The successors of Newton and the Bernoullis, as Euler, Clairaut, D’Alembert, Lagrange, Laplace, not to introduce living names, have been some of the most remarkable men of talent which the world has seen." (William Whewell, "History of the Inductive Sciences" Vol. 1, 1837)

"Simple as the law of gravity now appears, and beautifully in accordance with all the observations of past and of present times, consider what it has cost of intellectual study. Copernicus, Galileo, Kepler, Euler, Lagrange, Laplace, all the great names which have exalted the character of man, by carrying out trains of reasoning unparalleled in every other science; these, and a host of others, each of whom might have been the Newton of another field, have all labored to work out, the consequences which resulted from that single law which he discovered. All that the human mind has produced - the brightest in genius, the most persevering in application, has been lavished on the details of the law of gravity." (Charles Babbage, "The Ninth Bridgewater Treatise: A Fragment", 1838)

"It is a vulgar belief that our astronomical knowledge dates only from the recent century when it was rescued from the monks who imprisoned Galileo; but Hipparchus [...] who among other achievements discovered the precession of the eqinoxes, ranks with the Newtons and the Keplers; and Copernicus, the modern father of our celestial science, avows himself, in his famous work, as only the champion of Pythagoras, whose system he enforces and illustrates. Even the most modish schemes of the day on the origin of things, which captivate as much by their novelty as their truth, may find their precursors in ancient sages, and after a careful analysis of the blended elements of imagination and induction which charaterise the new theories, they will be found mainly to rest on the atom of Epicurus and the monad of Thales. Scientific, like spiritual truth, has ever from the beginning been descending from heaven to man." (Benjamin Disraeli, "Lothair", 1879)

"In mechanics Descartes can hardly be said to have advanced beyond Galileo. [...] His statement of the first and second laws of motion was an improvement in form, but his third law is false in substance. The motions of bodies in their direct impact was imperfectly understood by Galileo, erroneously given by Descartes, and first correctly stated by Wren, Wallis, and Huygens." (Florian Cajori, "A History of Mathematics", 1893)

"Roughly it amounts to this: mathematical analysis as it works today must make use of irrational numbers (such as the square root of two); the sense if any in which such numbers exist is hazy. Their reputed mathematical existence implies the disputed theories of the infi nite. The paradoxes remain. Without a satisfactory theory of irrational numbers, among other things, Achilles does not catch up with the tortoise, and the earth cannot turn on its axis. But as Galileo remarked, it does. It would seem to follow that something is wrong with our attempts to compass the infinite." (Eric T Bell, "Debunking Science", 1930)

"A pendulum is simply a small load suspended to a string or to a rod fixed at one end. If left alone it ends up hanging vertically, and if we push it away from the vertical, it starts beating. Galileo found that all beats last the same time, called the period, which depends on the length of the pendulum, but not on the amplitude of the beats or on the weight of the load. It also states that the period varies as the square root of the length: to double its period, one should make the pendulum four times as long. Making it heavier, or pushing it farther away from the vertical, has no effect. This property is known as isochrony, and it is the main reason why we are able to measure time with accuracy." (Ivar Ekeland, "The Best of All Possible Worlds", 2006)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Galileo Galilei - Historical Perspectives

"We pass with admiration along the great series of mathematicians, by whom the science of theoretical mechanics has been cultivated, fr...