"In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics." (Marshall Stone, cca 1960)
"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple.” (John von Neumann, “Method in the physical sciences”, 1961)
"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming." (George B Dantzig, "Linear Programming and Extensions", 1963)
"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"Statistics provides a quantitative example of the scientific process usually described qualitatively by saying that scientists observe nature, study the measurements, postulate models to predict new measurements, and validate the model by the success of prediction." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"After all, without the experiment - either a real one or a mathematical model - there would be no reason for a theory of probability." (Thornton C Fry,"Probability and Its Engineering Uses", 1965)
"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from 'ultimate' or 'fundamental' truth. It is as ridiculous to deride continuum physics because it is not obtained from nuclear physics as it would be to reproach it with lack of foundation in the Bible." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics", 1965)
"A mathematical model is neither an hypothesis nor a theory. Unlike the scientific hypothesis, a model is not verifiable directly by experiment. For all models are both true and false. Almost any plausible proposed relation among aspects of nature is likely to be true in the sense that it occurs (although rarely and slightly). Yet all models leave out a lot and are in that sense false, incomplete, inadequate. The validation of a model is not that it is 'true' but that it generates good testable hypotheses relevant to important problems. A model may be discarded in favor of a more powerful one, but it usually is simply outgrown when the live issues are not any longer those for which it was designed." (Richard Levins, "The Strategy of Model Building in Population Biology", American Scientist 54(4), 1966)
"The most natural way to give an independence proof is to establish a model with the required properties. This is not the only way to proceed since one can attempt to deal directly and analyze the structure of proofs. However, such an approach to set theoretic questions is unnatural since all our intuition come from our belief in the natural, almost physical model of the mathematical universe." (Paul J Cohen, "Set Theory and the Continuum Hypothesis", 1966)
"[…] mathematics is not portraying laws inherent in the design of the universe but is merely providing man-made schemes or models which we can use to deduce conclusions about our world only to the extent that the model is a good idealization." (Morris Kline, "Mathematics for the Nonmathematician", 1967)
"Mathematics is a self-contained microcosm, but it also has the potentiality of mirroring and modeling all the processes of thought and perhaps all of science. It has always had, and continues to an ever increasing degree to have, great usefulness. One could even go so far as to say that mathematics was necessary for man's conquest of nature and for the development of the human race through the shaping of its modes of thinking." (Mark Kac & Stanislaw M Ulam, "Mathematics and Logic", 1968)
"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"The laws of nature 'discovered' by science are merely mathematical or mechanical models that describe how nature behaves, not why, nor what nature 'actually' is. Science strives to find representations that accurately describe nature, not absolute truths. This fact distinguishes science from religion." (George O Abell, "Exploration of the Universe", 1969)
No comments:
Post a Comment