"By laying down the relativity postulate from the outset, sufficient means have been created for deducing henceforth the complete series of Laws of Mechanics from the principle of conservation of energy (and statements concerning the form of the energy) alone." (Hermann Minkowski, "The Fundamental Equations for Electromagnetic Processes in Moving Bodies", 1907)
"Integers are the fountainhead of all mathematics." (Hermann Minkowski, "Diophantische Approximationen: eine einfuhrung in die zahlen Theorie", 1907)
"The equations of Newton's mechanics exhibit a two-fold invariance. Their form remains unaltered, firstly, if we subject the underlying system of spatial coordinates to any arbitrary change of position ; secondly, if we change its state of motion, namely, by imparting to it any uniform translatory motion ; furthermore, the zero point of time is given no part to play. We are accustomed to look upon the axioms of geometry as finished with, when we feel ripe for the axioms of mechanics, and for that reason the two invariances are probably rarely mentioned in the same breath. Each of them by itself signifies, for the differential equations of mechanics, a certain group of transformations. The existence of the first group is looked upon as a fundamental characteristic of space. The second group is preferably treated with disdain, so that we with un-troubled minds may overcome the difficulty of never being able to decide, from physical phenomena, whether space, which is supposed to be stationary, may not be after all in a state of uniform translation. Thus the two groups, side by side, lead their lives entirely apart. Their utterly heterogeneous character may have discouraged any attempt to compound them. But it is precisely when they are compounded that the complete group, as a whole, gives us to think." (Hermann Minkowski, "Space and Time" ["Raum und Zeit"], [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)
"The objects of our perception invariably include places and times in combination. Nobody has ever noticed a place except at a time, or a time except at a place. But I still respect the dogma that both space and time have independent significance. A point of space at a point of time, that is a system of values x, y, z, t, I will call a world-point." (Hermann Minkowski, "Space and Time" ["Raum und Zeit"], [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)
"The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality." (Hermann Minkowski, "Space and Time" ["Raum und Zeit"], [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)
No comments:
Post a Comment