25 January 2021

On Hypotheses (1990-1999)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen,"Things I Have Learned (So Far)", American Psychologist, 1990)

"A fact is a simple statement that everyone believes. It is innocent, unless found guilty. A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found effective." (Edward Teller, "Conversations on the Dark Secrets of Physics", 1991)

"Notice also that scientists generally avoid the use of the word proof. Evidence can support a hypothesis or a theory, but it cannot prove a theory to be true. It is always possible that in the future a new idea will provide a better explanation of the evidence." (James E McLaren, "Heath Biology", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"The worst, i.e., most dangerous, feature of 'accepting the null hypothesis' is the giving up of explicit uncertainty. [...] Mathematics can sometimes be put in such black-and-white terms, but our knowledge or belief about the external world never can." (John Tukey, "The Philosophy of Multiple Comparisons", Statistical Science Vol. 6 (1), 1991) 

"Finite Nature is a hypothesis that ultimately every quantity of physics, including space and time, will turn out to be discrete and finite; that the amount of information in any small volume of space-time will be finite and equal to one of a small number of possibilities. [...] We take the position that Finite Nature implies that the basic substrate of physics operates in a manner similar to the workings of certain specialized computers called cellular automata." (Edward Fredkin, "A New Cosmogony", PhysComp ’92: Proceedings of the Workshop on Physics and Computation, 1993)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"A mathematical proof is a chain of logical deductions, all stemming from a small number of initial assumptions ('axioms') and subject to the strict rules of mathematical logic. Only such a chain of deductions can establish the validity of a mathematical law, a theorem. And unless this process has been satisfactorily carried out, no relation - regardless of how often it may have been confirmed by observation - is allowed to become a law. It may be given the status of a hypothesis or a conjecture, and all kinds of tentative results may be drawn from it, but no mathematician would ever base definitive conclusions on it." (Eli Maor, "e: The Story of a Number", 1994)

"If the null hypothesis is not rejected, [Sir Ronald] Fisher's position was that nothing could be concluded. But researchers find it hard to go to all the trouble of conducting a study only to conclude that nothing can be concluded." (Frank L Schmidt, "Statistical Significance Testing and Cumulative Knowledge", "Psychology: Implications for Training of Researchers, Psychological Methods" Vol. 1 (2), 1996)

"I seek […] to show that - other things being equal - the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth." (Richard Swinburne, "Simplicity as Evidence for Truth", 1997)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...