22 January 2021

On Physics (1980-1989)

"Since the beginning of physics, symmetry considerations have provided us with an extremely powerful and useful tool in our effort to understand nature. Gradually they have become the backbone of our theoretical formulation of physical laws." (Tsung-Dao Lee, "Particle Physics and Introduction to Field Theory", 1981)

"In physics it is usual to give alternative theoretical treatments of the same phenomenon. We construct different models for different purposes, with different equations to describe them. Which is the right model, which the 'true' set of equations? The question is a mistake. One model brings out some aspects of the phenomenon; a different model brings out others. Some equations give a rougher estimate for a quantity of interest, but are easier to solve. No single model serves all purposes best." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Physics is like that. It is important that the models we construct allow us to draw the right conclusions about the behaviour of the phenomena and their causes. But it is not essential that the models accurately describe everything that actually happens; and in general it will not be possible for them to do so, and for much the same reasons. The requirements of the theory constrain what can be literally represented. This does not mean that the right lessons cannot be drawn. Adjustments are made where literal correctness does not matter very much in order to get the correct effects where we want them; and very often, as in the staging example, one distortion is put right by another. That is why it often seems misleading to say that a particular aspect of a model is false to reality: given the other constraints that is just the way to restore the representation." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"The physicist […] engages in complex and difficult calculations, involving the manipulating of ideal, mathematical quantities that, at first glance, are wholly lacking in the music of the living world and the beauty of the resplendent cosmos. It would seem as if there exists no relationship between these quantities and reality. Yet these ideal numbers that cannot be grasped by one's senses, these numbers that only are meaningful from within the system itself, only meaningful as part of abstract mathematical functions, symbolize the image of existence. […] As a result of scientific man's creativity there arises an ordered, illumined, determined world, imprinted with the stamp of creative intellect, of pure reason and clear cognition. From the midst of the order and lawfulness we hear a new song, the song of the creature to the Creator, the song of the cosmos to its Maker." (Joseph B Soloveitchik, "Halakhic Man", 1983)

"The equations of physics have in them incredible simplicity, elegance and beauty. That in itself is sufficient to prove to me that there must be a God who is responsible for these laws and responsible for the universe" (Paul C W Davies, 1984)

"[…] the more you see how strangely Nature behaves, the harder it is to make a model that explains how even the simplest phenomena actually work. So theoretical physics has given up on that." (Richard P Feynman, "QED: The Strange Theory of Light and Matter", 1985)

"If doing mathematics or science is looked upon as a game, then one might say that in mathematics you compete against yourself or other mathematicians; in physics your adversary is nature and the stakes are higher." (Mark Kac, "Enigmas Of Chance", 1985)

"Simple rules can have complex consequences. This simple rule has such a wealth of implications that it is worth examining in detail. It is the far from self-evident guiding principle of reductionism and of most modern investigations into cosmic complexity. Reductionism will not be truly successful until physicists and cosmologists demonstrate that the large-scale phenomena of the world arise from fundamental physics alone. This lofty goal is still out of reach. There is uncertainty not only in how physics generates the structures of our world but also in what the truly fundamental rules of physics are." (William Poundstone, "The Recursive Universe", 1985)

"The most abstract conservation laws of physics come into their being in describing equilibrium in the most extreme conditions. They are the most rigorous conservation laws, the last to break down. The more extreme the conditions, the fewer the conserved structures. [...] In a deep sense, we understand the interior of the sun better that the interior of the earth, and the early stages of the big bang best of all." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage", 1988)

"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage", 1988)

"Physics is the basic science of matter and energy, and engineering is physics applied to structures and machines. They and chemistry are the sciences that biologists need to explain the structure and mechanism of living things." (R McNeill Alexander, "Dynamics of Dinosaurs and Other Extinct Giants", 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...