24 January 2021

String Theory II

"To build matter itself from geometry - that in a sense is what string theory does. It can be thought of that way, especially in a theory like the heterotic string which is inherently a theory of gravity in which the particles of matter as well as the other forces of nature emerge in the same way that gravity emerges from geometry. Einstein would have been pleased with this, at least with the goal, if not the realization. [...] He would have liked the fact that there is an underlying geometrical principle - which, unfortunately, we don’t really yet understand." (David Gross, [interview] 1988)

"I have no idea whether the properties of the universe as we know it are fundamental or emergent, but I believe that the mere possibility of the latter should give the string theorists pause, for it would imply that more than one set of microscopic equations is consistent with experiment - so that we are blind to these equations until better experiments are designed - and also that the true nature of the microscopic equations is irrelevant to our world." (Robert B Laughlin, "Fractional quantization", Reviews of Modern Physics vol. 71 (4), [Nobel lecture] 1999)

"String theory has the potential to show that all of the wondrous happenings in the universe - from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars; from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies - are reflections of one, grand physical principle, one master equation."  (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 2000)

"String theory [...] resolves the central dilemma confronting contemporary physics - the incompatibility between quantum mechanics and general relativity - and that unifies our understanding of all of nature's fundamental material constituents and forces. But to accomplish these feats, [...] string theory requires that the universe have extra space dimensions."  (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 2000)

"In string theory, to understand the nature of the Big Bang, or the quantum fate of a black hole, or the nature of the vacuum state that determines the properties of the elementary particles, requires information beyond perturbation theory [...] Perturbation theory is not everything. It is just the way the [string] theory was discovered." (Edward Witten, "The Past and Future of String Theory", 2003)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"String theory seems to be incompatible with a world in which a cosmological constant has a positive sign, which is what the observations indicate." (Lee Smolin, "The New Humanists: Science at the Edge", 2003)

"Some string theorists prefer to believe that string theory is too arcane to be understood by human beings, rather than consider the possibility that it might just be wrong." (Lee Smolin, "The Trouble with Physics: The Rise of String Theory, The Fall of a Science and What Comes Next", 2006)

"Even though it is, properly speaking, a postprediction, in the sense that the experiment was made before the theory, the fact that gravity is a consequence of string theory, to me, is one of the greatest theoretical insights ever." (Edward Witten)

"I would expect that a proper elucidation of what string theory really is all about would involve a revolution in our concepts of the basic laws of physics - similar in scope to any that occurred in the past. (Edward Witten [interview])

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...