24 January 2021

String Theory I

"The odd thing about string theory was very odd indeed. It required that the universe have at least ten dimensions. As we live in a universe of only four dimensions, the theory postulated that the other dimensions [...] had collapsed into structures so tiny that we do not notice them. (Timothy Ferris, "Coming of Age in the Milky Way", 1988)

"Theoretical physicists are accustomed to living in a world which is removed from tangible objects by two levels of abstraction. From tangible atoms we move by one level of abstraction to invisible fields and particles. A second level of abstraction takes us from fields and particles to the symmetry-groups by which fields and particles are related. The superstring theory takes us beyond symmetry-groups to two further levels of abstraction. The third level of abstraction is the interpretation of symmetry-groups in terms of states in ten-dimensional space-time. The fourth level is the world of the superstrings by whose dynamical behavior the states are defined." (Freeman J Dyson, "Infinite in All Directions", 1988)

"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)

"Discovery of supersymmetry would be one of the real milestones in physics, made even more exciting by its close links to still more ambitious theoretical ideas. Indeed, supersymmetry is one of the basic requirements of 'string theory', which is the framework in which theoretical physicists have had some success in unifying gravity with the rest of the elementary particle forces. Discovery of supersymmetry would would certainly give string theory an enormous boost." (Edward Witten, [preface to (Gordon Kane, "Supersymmetry: Unveiling the Ultimate Laws of Nature", 2000) 1999)

"For string theory to make sense, the universe should have nine spatial dimensions and one time dimension, for a total of ten dimensions." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)

"If string theory is right, the microscopic fabric of our universe is a richly intertwined multidimensional labyrinth within which the strings of the universe endlessly twist and vibrate, rhythmically beating out the laws of the cosmos." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)

"To appreciate string theory, one must understand what it is that is being generalized." (Edward Witten, "Physical Law and the Quest for Mathematical Understanding", Bulletin of the American Mathematical Society Vol. 40 (1), 2002)

"In string theory one studies strings moving in a fixed classical spacetime. […] what we call a background-dependent approach. […] One of the fundamental discoveries of Einstein is that there is no fixed background. The very geometry of space and time is a dynamical system that evolves in time. The experimental observations that energy leaks from binary pulsars in the form of gravitational waves - at the rate predicted by general relativity to the […] accuracy of eleven decimal place - tell us that there is no more a fixed background of spacetime geometry than there are fixed crystal spheres holding the planets up." (Lee Smolin, "Loop Quantum Gravity", The New Humanists: Science at the Edge, 2003)

"String theory is extremely attractive because gravity is forced upon us. All known consistent string theories include gravity, so while gravity is impossible in quantum field theory as we have known it, it is obligatory in string theory." (Edward Witten)

"[The discovery of string theory is like] wandering around the desert and then stumbling on a tiny pebble. But when we examine it carefully, we find that it is the tip of a gigantic pyramid." (Michio Kaku)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...