28 January 2021

On Manifolds II (Geometry II)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"If in the case of a notion whose specialisations form a continuous manifoldness, one passes from a certain specialisation in a definite way to another, the specialisations passed over form a simply extended manifoldness, whose true character is that in it a continuous progress from a point is possible only on two sides, forwards or backwards. If one now supposes that this manifoldness in its turn passes over into another entirely different, and again in a definite way, namely so that each point passes over into a definite point of the other, then all the specialisations so obtained form a doubly extended manifoldness. In a similar manner one obtains a triply extended manifoldness, if one imagines a doubly extended one passing over in a definite way to another entirely different; and it is easy to see how this construction may be continued. If one regards the variable object instead of the determinable notion of it, this construction may be described as a composition of a variability of n + 1 dimensions out of a variability of n dimensions and a variability of one dimension." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"In a mathematical sense, space is manifoldness, or combination of numbers. Physical space is known as the 3-dimension system. There is the 4-dimension system, there is the 10-dimension system." (Charles P Steinmetz, [New York Times interview] 1911)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"In her manifold opportunities Nature has thus helped man to polish the mirror of [man’s] mind, and the process continues. Nature still supplies us with abundance of brain-stretching theoretical puzzles and we eagerly tackle them; there are more worlds to conquer and we do not let the sword sleep in our hand; but how does it stand with feeling? Nature is beautiful, gladdening, awesome, mysterious, wonderful, as ever, but do we feel it as our forefathers did?" (Sir John A Thomson, "The System of Animate Nature", 1920)

"An 'empty world', i. e., a homogeneous manifold at all points at which equations (1) are satisfied, has, according to the theory, a constant Riemann curvature, and any deviation from this fundamental solution is to be directly attributed to the influence of matter or energy." (Howard P Robertson, "On Relativistic Cosmology", 1928)

"Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry in mathematics. It has been argued that mathematics is not only a science of implications but that it has to establish preference for one particular axiomatic system. Whereas physics bases this choice on observation and experimentation, i. e., on applicability to reality, mathematics bases it on visualization, the analogue to perception in a theoretical science. Accordingly, mathematicians may work with the non-Euclidean geometries, but in contrast to Euclidean geometry, which is said to be "intuitively understood," these systems consist of nothing but 'logical relations' or 'artificial manifolds'. They belong to the field of analytic geometry, the study of manifolds and equations between variables, but not to geometry in the real sense which has a visual significance." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"We must [...] maintain that mathematical geometry is not a science of space insofar as we understand by space a visual structure that can be filled with objects - it is a pure theory of manifolds." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

George B Dyson - Collected Quotes

"An Internet search engine is a finite-state, deterministic machine, except at those junctures where people, individually and collectiv...