23 January 2021

On Physics (1900-1909)

"The laws of thermodynamics, as empirically determined, express the approximate and probable behavior of systems of a great number of particles, or, more precisely, they express the laws of mechanics for such systems as they appear to beings who have not the fineness of perception to enable them to appreciate quantities of the order of magnitude of those which relate to single particles, and who cannot repeat their experiments often enough to obtain any but the most probable results." (Josiah W Gibbs, "Elementary Principles in Statistical Mechanics", 1902)

"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"The science of physics does not only give us [mathematicians] an opportunity to solve problems, but helps us also to discover the means of solving them, and it does this in two ways: it leads us to anticipate the solution and suggests suitable lines of argument." (Henri Poincaré, "La valeur de la science" ["The Value of Science"], 1905)

"[...] as for physics, it has developed remarkably as a precision science, in such a way that we can justifiably claim that the majority of all the greatest discoveries in physics are very largely based on the high degree of accuracy which can now be obtained in measurements made during the study of physical phenomena. [... Accuracy of measurement] is the very root, the essential condition, of our penetration deeper into the laws of physics - our only way to new discoveries." (K Bernhard Hasselberg, [Nobel Lecture] 1907)

"If the aim of physical theories is to explain experimental laws, theoretical physics is not an autonomous science; it is subordinate to metaphysics." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"It is impossible to follow the march of one of the greatest theories of physics, to see it unroll majestically its regular deductions starting from initial hypotheses, to see its consequences represent a multitude of experimental laws down to the smallest detail, without being charmed by the beauty of such a construction, without feeling keenly that such a creation of the human mind is truly a work of art." (Pierre-Maurice-Marie DuhemDuhem, "The Aim and Structure of Physical Theory", 1908)

"[...] physics makes progress because experiment constantly causes new disagreements to break out between laws and facts, and because physicists constantly touch up and modify laws in order that they may more faithfully represent the facts." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"The laws of physics are therefore provisional in that the symbols they relate too simple to represent reality completely." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...