29 January 2021

On Calculus: On Integrals (-1799)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire, "Éléments de la philosophie de Newton" ["Elements of the Philosophy of Newton"], 1738)

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"Every quantity whose value depends on one or more other quantities is called a function of these latter, whether one knows or is ignorant of what operations it is necessary to use to arrive from the latter to the first." (Sylvestre-François Lacroix, "Traité de calcul differéntiel et du calcul intégral", 1797-1798)

"Certain authors who seem to have perceived the weakness of this method assume virtually as an axiom that an equation has indeed roots, if not possible ones, then impossible roots. What they want to be understood under possible and impossible quantities, does not seem to be set forth sufficiently clearly at all. If possible quantities are to denote the same as real quantities, impossible ones the same as imaginaries: then that axiom can on no account be admitted but needs a proof necessarily." (Carl F Gauss, "New proof of the theorem that every algebraic rational integral function in one variable can be resolved into real factors of the first or the second degree", 1799)

"But just as much as it is easy to find the differential of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not." (Johann Bernoulli) [attributed] 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Proofs (1970-1979)

"A diagram is worth a thousand proofs."  (Carl E Linderholm, “Mathematics Made Difficult”, 1971) "In many cases a dull proof ...