09 June 2021

On Axioms (1950-1974)

"All followers of the axiomatic method and most mathematicians think that there is some such thing as an absolute ‘mathematical rigor’ which has to be satisfied by any deduction if it is to be valid. The history of mathematics shows that this is not the case, that, on the contrary, every generation is surpassed in rigor again and again by its successors." (Richard von Mises, "Positivism: A Study in Human Understanding", 1951)

"Automata have begun to invade certain parts of mathematics too, particularly but not exclusively mathematical physics or applied mathematics. The natural systems (e.g., central nervous system) are of enormous complexity and it is clearly necessary first to subdivide what they represent into several parts that to a certain extent are independent, elementary units. The problem then consists of understanding how these elements are organized as a whole. It is the latter problem which is likely to attract those who have the background and tastes of the mathematician or a logician. With this attitude, he will be inclined to forget the origins and then, after the process of axiomatization is complete, concentrate on the mathematical aspects." (John Von Neumann, "The General and Logical Theory of Automata", 1951)

"One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other." (John Nash, "Non-cooperative Games", Annals of Mathematics Vol. 54 (2), 1951)

"The constructions of the mathematical mind are at the same time free and necessary. The individual mathematician feels free to define his notions and set up his axioms as he pleases. But the question is will he get his fellow-mathematician interested in the constructs of his imagination. We cannot help the feeling that certain mathematical structures which have evolved through the combined efforts of the mathematical community bear the stamp of a necessity not affected by the accidents of their historical birth. Everybody who looks at the spectacle of modern algebra will be struck by this complementarity of freedom and necessity." (Hermann Weyl, "A Half-Century of Mathematics", The American Mathematical Monthly, 1951)

"We could compare mathematics so formalized to a game of chess in which the symbols correspond to the chessmen; the formulae, to definite positions of the men on the board; the axioms, to the initial positions of the chessmen; the directions for drawing conclusions, to the rules of movement; a proof, to a series of moves which leads from the initial position to a definite configuration of the men." (Friedrich Waismann & Karl Menger, "Introduction to Mathematical Thinking: The Formation of Concepts in Modern Mathematics", 1951)

"We are driven to conclude that science, like mathematics, is a system of axioms, assumptions, and deductions; it may start from being, but later leaves it to itself, and ends in the formation of a hypothetical reality that has nothing to do with existence; or it is the discovery of an ideal being which is, of course, present in what we call actuality, and renders it an existence for us only by being present in it." (Poolla T Raju, "Idealistic Thought of India", 1953)

"[…] the grand aim of all science […] is to cover the greatest possible number of empirical facts by logical deductions from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)

"The theory of relativity is a fine example of the fundamental character of the modern development of theoretical science. The initial hypotheses become steadily more abstract and remote from experience. On the other hand, it gets nearer to the grand aim of all science, which is to cover the greatest possible number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)

"At present game theory has, in my opinion, two important uses, neither of them related to games nor to conflict directly. First, game theory stimulates us to think about conflict in a novel way. Second, game theory leads to some genuine impasses, that is, to situations where its axiomatic base is shown to be insufficient for dealing even theoretically with certain types of conflict situations... Thus, the impact is made on our thinking process themselves, rather than on the actual content of our knowledge. (Anatol Rapoport, "Fights, games, and debates", 1960)

"In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics." (Marshall Stone, cca 1960)

"The inner circle of creative mathematicians have the well-kept trade secret that in a great many cases theorems come first and axioms second." (Carl B Allendoerfer, "The Narrow Mathematician", The American Mathematical Monthly, 1962)

"In the mathematical development of recent decades one sees clearly the rise of the conviction that the relevant properties of mathematical objects are those which can be stated in terms of their abstract structure rather than in terms of the elements which the objects were thought to be made of. The question thus naturally arises whether one can give a foundation for mathematics which expresses wholeheartedly this conviction concerning what mathematics is about, and in particular in which classes and membership in classes do not play any role. Here by 'foundation' we mean a single system of first-order axioms in which all usual mathematical objects can be defined and all their usual properties proved." (F William Lawvere, "The category of categories as a foundation for mathematics", 1965)

"So the first thing we have to accept is that even in mathematics you can start in different places. If all these various theorems are interconnected by reasoning there is no real way to say ‘These are the most fundamental axioms’, because if you were told something different instead you could also run the reasoning the other way. It is like a bridge with lots of members, and it is over-connected; if pieces have dropped out you can reconnect it another way." (Richard Feynman, "The Character of Physical Law", 1965)

"A mathematical proof, as usually written down, is a sequence of expressions in the state space. But we may also think of the proof as consisting of the sequence of justifications of consecutive proof steps - i.e., the references to axioms, previously-proved theorems, and rules of inference that legitimize the writing down of the proof steps. From this point of view, the proof is a sequence of actions (applications of rules of inference) that, operating initially on the axioms, transform them into the desired theorem." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"To the average mathematician who merely wants to know that his work is securely based, the most appealing choice is to avoid difficulties by means of Hilbert's program. Here one regards mathematics as a formal game and one is only concerned with the question of consistency." (Paul Cohen, "Axiomatic set theory, American Mathematical Society", 1971)

"For hundreds of pages the closely-reasoned arguments unroll, axioms and theorems interlock. And what remains with us in the end? A general sense that the world can be expressed in closely-reasoned arguments, in interlocking axioms and theorems." (Michael Frayn, "Constructions", 1974)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...