"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)
"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1970)
"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)
"There is no reason to assume that the universe has the slightest interest in intelligence - or even in life. Both may be random accidental by-products of its operations like the beautiful patterns on a butterfly's wings. The insect would fly just as well without them […]" (Arthur C Clarke, "The Lost Worlds of 2001", 1972)
"Within a Metaphysics of Quality, science is a set of static intellectual patterns describing this reality, but the patterns are not the reality they describe." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)
"A pattern has an integrity independent of the medium by virtue of which you have received the information that it exists. Each of the chemical elements is a pattern integrity. Each individual is a pattern integrity. The pattern integrity of the human individual is evolutionary and not static." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)
"First, nature's line patterns are not all of the same sort; the triple junctions generic in mud cracks cannot occur with caustics. Second, the geometrical optics of cylindrically symmetric artifacts such as telescopes, where departures from the ideal point focus are treated as 'aberrations', is very different from the geometrical optics of nature, where the generic forms of caustic surfaces are governed by the mathematics of catastrophe theory." (Michael V Berry & John F Nye, "Fine Structure in Caustic Junctions", Nature Vol. 267 (3606), 1977)
"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves - theme and variations - at each level of system. These similarities and differences are proper concerns for science. From the ceaseless streaming of protoplasm to the many-vectored activities of supranational systems, there are continuous flows through living systems as they maintain their highly organized steady states." (James G Miller, "Living Systems", 1978)
"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, "Elementary Number Theory", 1978)
"The unfoldings are called catastrophes because each of them has regions where a dynamic system can jump suddenly from one state to another, although the factors controlling the process change continuously. Each of the seven catastrophes represents a pattern of behavior determined only by the number of control factors, not by their nature or by the interior mechanisms that connect them to the system's behavior. Therefore, the elementary catastrophes can be models for a wide variety of processes, even those in which we know little about the quantitative laws involved." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)
"Yet wherever the cracks appear, they show a tendency to extend towards each other, to form characteristic networks, to form specific types of junctions. The location, the magnitude, and the timing of the cracks (their quantitative aspects) are beyond calculation, but their patterns of growth and the topology of their joining (the qualitative aspects) recur again and again." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)
No comments:
Post a Comment