03 June 2021

Calculus II: Integral Calculus

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"The effects of heat are subject to constant laws which cannot be discovered without the aid of mathematical analysis. The object of the theory is to demonstrate these laws; it reduces all physical researches on the propagation of heat, to problems of the integral calculus, whose elements are given by experiment. No subject has more extensive relations with the progress of industry and the natural sciences; for the action of heat is always present, it influences the processes of the arts, and occurs in all the phenomena of the universe." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Statistics: Definitions

"[Statistics] are the only tools by which an opening can be cut through the formidable thicket of difficulties that bars the path of th...