"Logic sometimes makes monsters. For half a century we have seen a mass of bizarre functions which appear to be forced to resemble as little as possible honest functions which serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth. Indeed, from the point of view of logic, these strange functions are the most general; on the other hand those which one meets without searching for them, and which follow simple laws appear as a particular case which does not amount to more than a small corner. In former times when one invented a new function it was for a practical purpose; today one invents them purposely to show up defects in the reasoning of our fathers and one will deduce from them only that. If logic were the sole guide of the teacher, it would be necessary to begin with the most general functions, that is to say with the most bizarre. It is the beginner that would have to be set grappling with this teratologic museum." (Henri Poincaré, 1899)
"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"An essential difference between continuity and differentiability is whether numbers are involved or not. The concept of continuity is characterized by the qualitative property that nearby objects are mapped to nearby objects. However, the concept of differentiation is obtained by using the ratio of infinitesimal increments. Therefore, we see that differentiability essentially involves numbers." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"[...] differentiation is performed by focusing on the behavior of a function near one point. A quantity obtained in this manner is essentially a local quantity. Is it possible that such local quantities can show us something very basic about global properties such as smoothness? Does there exist a place in mathematics which would enable us to study the relationship between local and global quantities?" (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"To consider differentiable functions, we must introduce a coordinate system on the plane and thereby to concentrate on the world of numbers.[...] a continuous function defined on a plane can be differentiable or nondifferentiable depending on the choice of coordinates. [...] the choice of coordinates on the plane determines which functions among the continuous functions should be selected as differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future)." (Benoît Mandelbrot, "The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward", 2004)?
"Roughly speaking, a function defined on an open set of
Euclidean space is differentiable at a point if we can approximate it in a
neighborhood of this point by a linear map, which is called its differential
(or total derivative). This differential can be of course expressed by partial
derivatives, but it is the differential and not the partial derivatives that
plays the central role." (Jacques Lafontaine, "An Introduction to Differential Manifolds",
2010)
"I turn away with fright and horror from the lamentable evil of functions which do not have derivatives." (Charles Hermite, [letter to Thomas J Stieltjes])
No comments:
Post a Comment