03 June 2021

On Differential Equations IV

"Problems relative to the uniform propagation, or to the varied movements of heat in the interior of solids, are reduced […] to problems of pure analysis, and the progress of this part of physics will depend in consequence upon the advance which may be made in the art of analysis. The differential equations […] contain the chief results of the theory; they express, in the most general and concise manner, the necessary relations of numerical analysis to a very extensive class of phenomena; and they connect forever with mathematical science one of the most important branches of natural  philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"It is well known that the central problem of the whole of modern mathematics is the study of the transcendental functions defined by differential equations." (Felix Klein, "Lectures on Mathematics", 1911)

"Men have fallen in love with statues and pictures. I find it easier to imagine a man falling in love with a differential equation, and I am inclined to think that some mathematicians have done so. Even in a nonmathematician like myself, some differential equations evoke fairly violent physical sensations to those described by Sappho and Catallus when viewing their mistresses. Personally, I obtain an even greater 'kick' from finite difference equations, which are perhaps more like those which an up-to-date materialist would use to describe human behavior." (John B S Haldane, "The Inequality of Man and Other Essays", 1932)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"The study of changes in the qualitative structure of the flow of a differential equation as parameters are varied is called bifurcation theory. At a given parameter value, a differential equation is said to have stable orbit structure if the qualitative structure of the flow does not change for sufficiently small variations of the parameter. A parameter value for which the flow does not have stable orbit structure is called a bifurcation value, and the equation is said to be at a bifurcation point." (Jack K Hale & Hüseyin Kocak, "Dynamics and Bifurcations", 1991)

"Dynamical systems that vary in discrete steps […] are technically known as mappings. The mathematical tool for handling a mapping is the difference equation. A system of difference equations amounts to a set of formulas that together express the values of all of the variables at the next step in terms of the values at the current step. […] For mappings, the difference equations directly express future states in terms of present ones, and obtaining chronological sequences of points poses no problems. For flows, the differential equations must first be solved. General solutions of equations whose particular solutions are chaotic cannot ordinarily be found, and approximations to the latter are usually determined by numerical methods." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Faced with the overwhelming complexity of the real world, time pressure, and limited cognitive capabilities, we are forced to fall back on rote procedures, habits, rules of thumb, and simple mental models to make decisions. Though we sometimes strive to make the best decisions we can, bounded rationality means we often systematically fall short, limiting our ability to learn from experience." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Following the traditional classification in the field of control systems, a system that describes the input-output behavior in a way similar to a mathematical mapping without involving a differential operator or equation is called a static system. In contrast, a system described by a differential operator or equation is called a dynamic system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

Previous Post <<||>> Next Post

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...