07 June 2021

On Patterns (1990-1999)

"Mathematics is an exploratory science that seeks to understand every kind of pattern - patterns that occur in nature, patterns invented by the human mind, and even patterns created by other patterns." (Lynn A Steen, "The Future of Mathematics Education", 1990)

"Phenomena having uncertain individual outcomes but a regular pattern of outcomes in many repetitions are called random. 'Random' is not a synonym for 'haphazard' but a description of a kind of order different from the deterministic one that is popularly associated with science and mathematics. Probability is the branch of mathematics that describes randomness." (David S Moore, "Uncertainty", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

"Scientists have discovered many peculiar things, and many beautiful things. But perhaps the most beautiful and the most peculiar thing that they have discovered is the pattern of science itself. Our scientific discoveries are not independent isolated facts; one scientific generalization finds its explanation in another, which is itself explained by yet another. By tracing these arrows of explanation back toward their source we have discovered a striking convergent pattern - perhaps the deepest thing we have yet learned about the universe." (Steven Weinberg, "Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature", 1992)

"Searching for patterns is a way of thinking that is essential for making generalizations, seeing relationships, and understanding the logic and order of mathematics. Functions evolve from the investigation of patterns and unify the various aspects of mathematics." (Marilyn Burns, "About Teaching Mathematics: A K–8 Resource", 1992)

"Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"World view, a concept borrowed from cultural anthropology, refers to the culturally dependent, generally subconscious, fundamental organization of the mind. This conceptual organization manifests itself as a set of presuppositions that predispose one to feel, think, and act in predictable patterns." (Kenneth G Tobin, "The practice of constructivism in science education", 1993)

"[For] us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the complete collection of rules as the mental grammar of the language, or grammar for short." (Ray Jackendoff, "Patterns in the Mind", 1994)

"A neural network is characterized by A) its pattern of connections between the neurons (called its architecture), B) its method of determining the weights on the connections (called its training, or learning, algorithm), and C) its activation function." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Each of nature's patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what's going on." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Human mind and culture have developed a formal system of thought for recognizing, classifying, and exploiting patterns. We call it mathematics. By using mathematics to organize and systematize our ideas about patterns, we have discovered a great secret: nature's patterns are not just there to be admired, they are vital clues to the rules that govern natural processes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Patterns possess utility as well as beauty. Once we have learned to recognize a background pattern, exceptions suddenly stand out." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ?K Nishijima , "Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"Whatever the reasons, mathematics definitely is a useful way to think about nature. What do we want it to tell us about the patterns we observe? There are many answers. We want to understand how they happen; to understand why they happen, which is different; to organize the underlying patterns and regularities in the most satisfying way; to predict how nature will behave; to control nature for our own ends; and to make practical use of what we have learned about our world. Mathematics helps us to do all these things, and often it is indispensable." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"If we are to have meaningful, connected experiences; ones that we can comprehend and reason about; we must be able to discern patterns to our actions, perceptions, and conceptions. Underlying our vast network of interrelated literal meanings (all of those words about objects and actions) are those imaginative structures of understanding such as schema and metaphor, such as the mental imagery that allows us to extrapolate a path, or zoom in on one part of the whole, or zoom out until the trees merge into a forest." (William H Calvin, "The Cerebral Code", 1996)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"The role of science, like that of art, is to blend proximate imagery with more distant meaning, the parts we already understand with those given as new into larger patterns that are coherent enough to be acceptable as truth. Biologists know this relation by intuition during the course of fieldwork, as they struggle to make order out of the infinitely varying patterns of nature." (Edward O Wilson, "In Search of Nature", 1996)

"Mathematics can function as a telescope, a microscope, a sieve for sorting out the signal from the noise, a template for pattern perception, a way of seeking and validating truth. […] A knowledge of the mathematics behind our ideas can help us to fool ourselves a little less often, with less drastic consequences." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics is a way of thinking that can help make muddy relationships clear. It is a language that allows us to translate the complexity of the world into manageable patterns. In a sense, it works like turning off the houselights in a theater the better to see a movie. Certainly, something is lost when the lights go down; you can no longer see the faces of those around you or the inlaid patterns on the ceiling. But you gain a far better view of the subject at hand." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"A neural network consists of large numbers of simple neurons that are richly interconnected. The weights associated with the connections between neurons determine the characteristics of the network. During a training period, the network adjusts the values of the interconnecting weights. The value of any specific weight has no significance; it is the patterns of weight values in the whole system that bear information. Since these patterns are complex, and are generated by the network itself (by means of a general learning strategy applicable to the whole network), there is no abstract procedure available to describe the process used by the network to solve the problem. There are only complex patterns of relationships." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics has traditionally been described as the science of number and shape. […] When viewed in this broader context, we see that mathematics is not just about number and shape but about pattern and order of all sorts. Number and shape - arithmetic and geometry - are but two of many media in which mathematicians work. Active mathematicians seek patterns wherever they arise." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Sequences of random numbers also inevitably display certain regularities. […] The trouble is, just as no real die, coin, or roulette wheel is ever likely to be perfectly fair, no numerical recipe produces truly random numbers. The mere existence of a formula suggests some sort of predictability or pattern." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, 1999)

"Randomness is the very stuff of life, looming large in our everyday experience. […] The fascination of randomness is that it is pervasive, providing the surprising coincidences, bizarre luck, and unexpected twists that color our perception of everyday events." (Edward Beltrami, "Chaos and Order in Mathematics and Life", 1999)

"The first view of randomness is of clutter bred by complicated entanglements. Even though we know there are rules, the outcome is uncertain. Lotteries and card games are generally perceived to belong to this category. More troublesome is that nature's design itself is known imperfectly, and worse, the rules may be hidden from us, and therefore we cannot specify a cause or discern any pattern of order. When, for instance, an outcome takes place as the confluence of totally unrelated events, it may appear to be so surprising and bizarre that we say that it is due to blind chance." (Edward Beltrami. "What is Random?: Chance and Order in Mathematics and Life", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...