06 June 2021

On Invariance (19700-1979)

 "As a metaphor - and I stress that it is intended as a metaphor - the concept of an invariant that arises out of mutually or cyclically balancing changes may help us to approach the concept of self. In cybernetics this metaphor is implemented in the ‘closed loop’, the circular arrangement of feedback mechanisms that maintain a given value within certain limits. They work toward an invariant, but the invariant is achieved not by a steady resistance, the way a rock stands unmoved in the wind, but by compensation over time. Whenever we happen to look in a feedback loop, we find the present act pitted against the immediate past, but already on the way to being compensated itself by the immediate future. The invariant the system achieves can, therefore, never be found or frozen in a single element because, by its very nature, it consists in one or more relationships - and relationships are not in things but between them."  (Ernst von Glasersfeld German, "Cybernetics, Experience and the Concept of Self", 1970)

"The theory of rings and ideals was put on a more systematic and axiomatic basis by Emmy Noether, one of the few great women mathematicians [...] Many results on rings and ideals were already known [...] but by properly formulating the abstract notions she was able to subsume these results under the abstract theory. Thus she reexpressed Hilbert's basic theorem [...] as follows: A ring of polynomials in any number of variables over a ring of coeffcients that has an identity element and a finite basis, itself has a finite basis. In this reforumulation she made the theory of invariants a part of abstract algebra." (Morris Kline, "Mathematical Thought From Ancient to Modern Times", 1972)

"Non-standard analysis frequently simplifies substantially the proofs, not only of elementary theorems, but also of deep results. This is true, e.g., also for the proof of the existence of invariant subspaces for compact operators, disregarding the improvement of the result; and it is true in an even higher degree in other cases. This state of affairs should prevent a rather common misinterpretation of non-standard analysis, namely the idea that it is some kind of extravagance or fad of mathematical logicians. Nothing could be farther from the truth. Rather, there are good reasons to believe that non-standard analysis, in some version or other, will be the analysis of the future." (Kurt Gödel, "Remark on Non-standard Analysis", 1974)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is "stretched" in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

"So far as is feasible, diagrams should be planned so that (a) departures from "standard" conditions should be revealed as departures from linearity, or departures from totally random scatter, or as departures of contours from circular form; (b) different points should have approximately independent errors; (c) points should have approximately equal errors, preferably known and indicated, or, if equal errors cannot be achieved, major differences in the precision of individual points should be indicated, at least roughly; (d) individual points should have clearcut interpretation; (e) variables plotted should have clearcut physical interpretation; (f) any non-linear transformations applied should not accentuate uninteresting ranges; (g) any reasonable invariance should be exploited." (David R Cox,"Some Remarks on the Role in Statistics of Graphical Methods", Applied Statistics 27 (1), 1978)

"[…] in trying to prove a concrete geometrical result such as the classification theorem for surfaces, the purely topological structure of the surface (that it be locally euclidean) does not give us much leverage from which to start. On the other hand, although we can define algebraic invariants, such as the fundamental group, for topological spaces in general, they are not a great deal of use to us unless we can calculate them for a reasonably large collection of spaces. Both of these problems may be dealt with effectively by working with spaces that can be broken up into pieces which we can recognize, and which fit together nicely, the so called triangulable spaces." (Mark A Armstrong, "Basic Topology", 1979)

"Showing that two spaces are homeomorphic is a geometrical problem, involving the construction of a specific homeomorphism between them. The techniques used vary with the problem. […] Attempting to prove that two spaces are not homeomorphic to one another is a problem of an entirely different nature. We cannot possibly examine each function between the two spaces individually and check that it is not a homeomorphism. Instead we look for 'topological invariants' of spaces: an invariant may be a geometrical property of the space, a number like the Euler number defined for the space, or an algebraic system such as a group or a ring constructed from the space. The important thing is that the invariant be preserved by a homeomorphism- hence its name. If we suspect that two spaces are not homeomorphic, we may be able to confirm our suspicion by computing some suitable invariant and showing that we obtain different answers." (Mark A Armstrong, "Basic Topology", 1979)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Numbers: On Prime Numbers (Unsourced)

"A prime number, which exceeds a multiple of four by unity, is only once the hypotenuse of a right triangle." (Pierre de Fermat) ...