08 June 2021

On Patterns (2000-2009)

"In a linear world of equilibrium and predictability, the sparse research into an evidence base for management prescriptions and the confused findings it produces would be a sign of incompetence; it would not make much sense. Nevertheless, if organizations are actually patterns of nonlinear interaction between people; if small changes could produce widespread major consequences; if local interaction produces emergent global pattern; then it will not be possible to provide a reliable evidence base. In such a world, it makes no sense to conduct studies looking for simple causal relationships between an action and an outcome. I suggest that the story of the last few years strongly indicates that human action is nonlinear, that time and place matter a great deal, and that since this precludes simple evidence bases we do need to rethink the nature of organizations and the roles of managers and leaders in them." (Ralph D Stacey, "Complexity and Organizational Reality", 2000)

"The central proposition in [realistic thinking] is that human actions and interactions are processes, not systems, and the coherent patterning of those processes becomes what it becomes because of their intrinsic capacity, the intrinsic capacity of interaction and relationship, to form coherence. That emergent form is radically unpredictable, but it emerges in a controlled or patterned way because of the characteristic of relationship itself, creation and destruction in conditions at the edge of chaos." (Ralph D Stacey et al, "Complexity and Management: Fad or Radical Challenge to Systems Thinking?", 2000)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"There are endless examples of elaborate structures and apparently complex processes being generated through simple repetitive rules, all of which can be easily simulated on a computer. It is therefore tempting to believe that, because many complex patterns can be generated out of a simple algorithmic rule, all complexity is created in this way." (F David Peat, "From Certainty to Uncertainty", 2002)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Didier Sornette, "Why Stock Markets Crash: Critical events in complex financial systems", 2003)

"Learning is the process of creating networks. Nodes are external entities which we can use to form a network. Or nodes may be people, organizations, libraries, web sites, books, journals, database, or any other source of information. The act of learning (things become a bit tricky here) is one of creating an external network of nodes - where we connect and form information and knowledge sources. The learning that happens in our heads is an internal network (neural). Learning networks can then be perceived as structures that we create in order to stay current and continually acquire, experience, create, and connect new knowledge (external). And learning networks can be perceived as structures that exist within our minds (internal) in connecting and creating patterns of understanding." (George Siemens, "Knowing Knowledge", 2006)

"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"There is a big debate as to whether logic is part of mathematics or mathematics is part of logic. We use logic to think. We notice that our thinking, when it is valid, goes in certain patterns. These patterns can be studied mathematically. Thus, logic is a part of mathematics, called 'mathematical logic'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006) 

"The system is highly sensitive to some small changes and blows them up into major alterations in weather patterns. This is popularly known as the butterfly effect in that it is possible for a butterfly to flap its wings in São Paolo, so making a tiny change to air pressure there, and for this tiny change to escalate up into a hurricane over Miami. You would have to measure the flapping of every butterfly’s wings around the earth with infinite precision in order to be able to make long-term forecasts. The tiniest error made in these measurements could produce spurious forecasts. However, short-term forecasts are possible because it takes time for tiny differences to escalate."  (Ralph D Stacey, "Strategic Management and Organisational Dynamics: The Challenge of Complexity" 5th Ed. , 2007)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Why is the human need to be in control relevant to a discussion of random patterns? Because if events are random, we are not in control, and if we are in control of events, they are not random. There is therefore a fundamental clash between our need to feel we are in control and our ability to recognize randomness. That clash is one of the principal reasons we misinterpret random events."  (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"In emergent processes, the whole is greater than the sum of the parts. A mathematical phenomenon that appears in certain dynamic systems also occurs within biological systems, from molecular interactions within the cells to the cognitive processes that we use to move within society. [...] Emergent patterns of ideas, beauty, desires, or tragicomedy wait, ready to trap the next traveler in their complex domain of neatly patterned squares - the never-ending world of chess metaphors." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought." (Clifford A Pickover, "The Math Book", 2009)

"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...