30 November 2025

On Numbers (1930-1939)

"[…] if number is merely the product of our mind, space has a reality outside our mind whose laws we cannot a priori completely prescribe" (Carl F Gauss, 1830)

"Geometry, then, is the application of strict logic to those properties of space and figure which are self-evident, and which therefore cannot be disputed. But the rigor of this science is carried one step further; for no property, however evident it may be, is allowed to pass without demonstration, if that can be given. The question is therefore to demonstrate all geometrical truths with the smallest possible number of assumptions." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1830)

"It can happen to but few philosophers, and but at distant intervals, to snatch a science, like Dalton, from the chaos of indefinite combination, and binding it in the chains of number, to exalt it to rank amongst the exact. Triumphs like these are necessarily 'few and far between’." (Charles Babbage, "Reflections on the Decline of Science in England, and on Some of Its Causes", 1830)

"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte,"The Positive Philosophy", 1830)

"We must admit with humility that, while number is purely a product of our minds, space has a reality outside our minds, so that we cannot completely prescribe its properties a priori." (Karl Friedrich Gauss, 1830)

"Complete knowledge of the nature of an analytic function must also include insight into its behavior for imaginary values of the arguments. Often the latter is indispensable even for a proper appreciation of the behavior of the function for real arguments. It is therefore essential that the original determination of the function concept be broadened to a domain of magnitudes which includes both the real and the imaginary quantities, on an equal footing, under the single designation complex numbers." (Carl F Gauss, cca. 1831)

"[geometrical representation of complex numbers] completely established the intuitive meaning of complex numbers, and more is not needed to admit these quantities into the domain of arithmetic." (Carl F Gauss, 1831)

"Originally assuming the concept of the absolute integers, it extended its domain step by step; integers were supplemented by fractions, rational numbers by irrational numbers, positive numbers by negative numbers, and real numbers by imaginary numbers. This advance, however, occurred initially with a fearfully hesitant step. The first algebraists preferred to call negative roots of equations false roots, and it is precisely these where the problem to which they refer was always termed in such a way as to ensure that the nature of the quantity sought did not admit any opposite." (Carl F Gauss,"Theoria residuorum biquadraticum. Commentatio secunda. [Selbstanzeige]", Göttingische gelehrte Anzeigen 23" (4), 1831)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities formerly and occasionally now, though improperly, called impossible as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

"That this subject [imaginary numbers] has hitherto been surrounded by mysterious obscurity, is to be attributed largely to an ill adapted notation. If we call +1, -1, and √-1 had been called direct, inverse and lateral units, instead of positive, negative, and imaginary" (or impossible) units, such an obscurity would have been out of the question." (Carl F Gauss, "Theoria residuorum biquadraticum. Commentatio secunda", Göttingische gelehrte Anzeigen 23" (4), 1831)

"An author has always great difficulty in avoiding unnecessary and tedious detail on the one hand; while, on the other, he must notice such a number of facts as may convince a student, that he is not wandering in a wilderness of crude hypotheses or unsupported assumptions." (Henry T De la Beche, "A Geological Manual", 1832)

"There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle,"Considerations on Crime Statistics", 1833)

"The measure of the probability of an event is the ratio of the number of cases favourable to that event, to the total number of cases favourable or contrary, and all equally possible, or all of which have the same chance." (Siméon-Denis Poisson, "Recherches sur la Probabilités des Jugemens" ["An Investigation of the Laws of Thought"], 1837)

"Things of all kinds are subject to a universal law which may be called the law of large numbers. It consists in the fact that, if one observes very considerable numbers of events of the same nature, dependent on constant causes and causes which vary irregularly, sometimes in one direction, sometimes in the other, it is to say without their variation being progressive in any definite direction, one shall find, between these numbers, relations which are almost constant." (Siméon-Denis Poisson, "Poisson’s Law of Large Numbers", 1837)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Numbers (1200-1599)

"The existence of an actual infinite multitude is impossible. For any set of things one considers must be a specific set. And sets of t...