"There are two types of systems engineering - basis and applied. [...] Systems engineering is, obviously, the engineering of a system. It usually, but not always, includes dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, optimating, etc., etc. It connotes an optimum method, realized by modern engineering techniques. Basic systems engineering includes not only the control system but also all equipment within the system, including all host equipment for the control system. Applications engineering is - and always has been - all the engineering required to apply the hardware of a hardware manufacturer to the needs of the customer. Such applications engineering may include, and always has included where needed, dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, and any technique needed to meet the end purpose - the fitting of an existing line of production hardware to a customer's needs. This is applied systems engineering." (Instruments and Control Systems Vol. 31, 1958)
"The principle of complementarity states that no single model is possible which could provide a precise and rational analysis of the connections between these phenomena [before and after measurement]. In such a case, we are not supposed, for example, to attempt to describe in detail how future phenomena arise out of past phenomena. Instead, we should simply accept without further analysis the fact that future phenomena do in fact somehow manage to be produced, in a way that is, however, necessarily beyond the possibility of a detailed description. The only aim of a mathematical theory is then to predict the statistical relations, if any, connecting the phenomena." (David Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables", 1952)
"Because we can never be sure that a postulated model is entirely appropriate, we must proceed in such a manner that inadequacies can be taken account of and their implications considered as we go along. To do this we must regard statistical analysis, which is a step in the major iteration […] as itself an iteration. To be on firm ground we must do more than merely postulate a model; we must build and test a tentative model at each stage of the investigation.(George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)
"Modeling is definitely the most important and critical problem. If the mathematical model is not valid, any subsequent analysis, estimation, or control study is meaningless. The development of the model in a convenient form can greatly reduce the complexity of the actual studies." (Fred C Scweppe, "Uncertain dynamic systems", 1973)
"The process [of statistical analysis] usually begins by the postulating of a model worthy to be tentatively entertained. The data analyst will have arrived at this tentative model in cooperation with the scientific investigator. They will choose it 'So that, in the light of the then available knowledge, it best takes account of relevant phenomena in the simplest way possible. it will usually contain unknown parameters. Given the data the analyst can now make statistical inferences about the parameters conditional on the correctness of this first tentative model. These inferences form part of the conditional analysis. If the model is correct, they provide all there is to know about the problem under study, given the data." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)
"The pseudo approach to uncertainty modeling refers to the use of an uncertainty model instead of using a deterministic model which is actually (or at least theoretically) available. The uncertainty model may be desired because it results in a simpler analysis, because it is too difficult (expensive) to gather all the data necessary for an exact model, or because the exact model is too complex to be included in the computer." (Fred C Scweppe, "Uncertain dynamic systems", 1973)
No comments:
Post a Comment