"A bell cannot tell time, but it can be moved in just such a way as to say twelve o’clock - similarly, a man cannot calculate infinite numbers, but he can be moved in just such a way as to say π." (Daniel Tammet,"Thinking in Numbers: How Maths Illuminates Our Lives", 2012)
"A function acts like a set of rules for turning some numbers into others, a machine with parts that we can manipulate to accomplish anything we can imagine." (David Perkins, "Calculus and Its Origins", 2012)"
"It turns out pi is different. Not only is it incapable of being expressed as a fraction, but in fact pi fails to satisfy any algebraic relationship whatsoever. What does pi do? It doesn’t do anything. It is what it is. Numbers like this are called transcendental" (Latin for 'climbing beyond'). Transcendental numbers - and there are lots of them - are simply beyond the power of algebra to describe." (Paul Lockhart, "Measurement", 2012)
"Like works of literature, mathematical ideas help expand our circle of empathy, liberating us from the tyranny of a single, parochial point of view. Numbers, properly considered, make us better people." (Daniel Tammet, "Thinking in Numbers" , 2012)
"The engineer and the mathematician have a completely different understanding of the number pi. In the eyes of an engineer, pi is simply a value of measurement between three and four, albeit fiddlier than either of these whole numbers. [...] Mathematicians know the number pi differently, more intimately. What is pi to them? It is the length of a circle’s round line" (its circumference) divided by the straight length" (its diameter) that splits the circle into perfect halves. It is an essential response to the question, ‘What is a circle?’ But this response – when expressed in digits – is infinite: the number has no last digit, and therefore no last-but-one digit, no antepenultimate digit, no third-from-last digit, and so on." (Daniel Tammet, "Thinking in Numbers" , 2012)
"The law of large numbers is a law of mathematical statistics. It states that when random samples are sufficiently large they match the population extremely closely. […] The 'law' of small numbers is a widespread human misconception that even small samples match the population closely." (Geoff Cumming, "Understanding the New Statistics", 2012)
"The solution to a math problem is not a number; it’s an argument, a proof. We’re trying to create these little poems of pure reason. Of course, like any other form of poetry, we want our work to be beautiful as well as meaningful. Mathematics is the art of explanation, and consequently, it is difficult, frustrating, and deeply satisfying." (Paul Lockhart, "Measurement", 2012)
"The tangling and untangling of numerical relationships is called algebra. […] The point of doing algebra is not to solve equations; it’s to allow us to move back and forth between several equivalent representations, depending on the situation at hand and depending on our taste. In this sense, all algebraic manipulation is psychological. The numbers are making themselves known to us in various ways, and each different representation has its own feel to it and can give us ideas that might not occur to us otherwise." (Paul Lockhart, "Measurement", 2012)
"While the main point of statistics is to present a meaningful picture of things we care about, in many cases we also hope to act on these numbers." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)
"[…] the symmetry group of the infinite logarithmic spiral is an infinite group, with one element for each real number. Two such transformations compose by adding the corresponding angles, so this group is isomorphic to the real numbers under addition." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)
"The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you." (Emily Oster, "Expecting Better", 2013)
"Numbers are not inherently tedious. They can be illuminating, fascinating, even entertaining. The trouble starts when we decide that it is more important for a graph to be artistic than informative." (Gary Smith, "Standard Deviations", 2014)
"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)
"We don’t need new indicators that replace old simple numbers with new simple numbers. We need instead bespoke indicators, tailored to the specific needs and specific questions of governments, businesses, communities, and individuals." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)
"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers." (Gary Smith, "Standard Deviations", 2014)
"[…] the usefulness of mathematics is by no means limited to finite objects or to those that can be represented with a computer. Mathematical concepts depending on the idea of infinity, like real numbers and differential calculus, are useful models for certain aspects of physical reality." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"[…] what exactly do we mean by a bifurcation? The usual definition involves the concept of 'topological equivalence': if the phase portrait changes its topological structure as a parameter is varied, we say that a bifurcation has occurred. Examples include changes in the number or stability of fixed points, closed orbits, or saddle connections as a parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)
"A network" (or graph) consists of a set of nodes" (or vertices, actors) and a set of edges" (or links, ties) that connect those nodes. [...] The size of a network is characterized by the numbers of nodes and edges in it." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"A system which is usually composed of large number of possibly heterogeneous interacting agents, which are seen to exhibit emergent behavior. Emergence implies that system level behavior" (macro level) cannot be inferred from observation of individual level behavior of its constituents" (micro level). This absence of explicit links between the micro and macro levels makes complex systems especially difficult to analyze using traditional statistical and analytical techniques to study the dynamics of behavior. One typically requires the use of bottom up simulation based methods to study such systems. Complex systems are ubiquitous - markets, societies, social networks, the Internet, weather, ecosystems, are just a few examples." (Stephen E Glavin & Abhijit Sengupta, "Modelling of Consumer Goods Markets: An Agent-Based Computational Approach", Handbook of Research on Managing and Influencing Consumer Behavior, 2015)
"A very basic observation concerning a fundamental property of the world we live in is the existence of objects that can be distinguished from each other. For the definition of a set, it is indeed of crucial importance that things have individuality, because in order to decide whether objects belong to a particular set they must be distinguishable from objects that are not in the set. Without having made the basic experience of individuality of objects, it would be difficult to imagine or appreciate the concept of a set." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"But we also have to know that every model has its limitations. The model of natural numbers and their sums is very successful to determine the number of objects in the union of two different groups of well-distinguished objects. But as a mathematical model, the arithmetic of numbers is not generally true but only validated and confirmed for certain well-controlled situations. […] If a model makes valid predictions in many concrete cases, if it already has been applied and tested successfully in many situations, we have some right to trust in that model. By now, we believe in the model 'natural numbers and their arithmetic' and in its predictions without having to check it every time. We do not expect that the result might be wrong; hence the verification step is not needed any longer for validating the model. If the model had a flaw, it would have been eliminated already in the past." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"Complex numbers do not fit readily into many people’s schema for ‘number’, and students often reject the concept when it is first presented. Modern mathematicians look at the situation with the aid of an enlarged schema in which the facts make sense." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)
"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Design is the process of taking something that appears in the mind’s eye, modeling it in one or more of a number of ways, predicting how that thing will behave if it is made, and then making it, sometimes modifying the design as we make it. Design is what engineering is about. Furthermore, modeling is how engineering design is done. This includes mental models, mathematical models, computer models, plans and drawings, written language, and" (sometimes) physical models." (William M Bulleit, "The Engineering Way of Thinking: The Idea", Structure [magazine], 2015)
"Design is the process of taking something that appears in the mind’s eye, modeling it in one or more of a number of ways, predicting how that thing will behave if it is made, and then making it, sometimes modifying the design as we make it. Design is what engineering is about. Furthermore, modeling is how engineering design is done. This includes mental models, mathematical models, computer models, plans and drawings, written language, and" (sometimes) physical models." (William M Bulleit, "The Engineering Way of Thinking: The Idea", Structure [magazine], 2015)
"Mathematicians usually think not in terms of concrete realizations but in terms of rules that are given axiomatically. Mathematics is the art of arguing with some chosen logic and some chosen axioms. As such, it is simply one of the oldest games with symbols and words." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"Moreover, there is still another important observation that seems to be essential for the idea to group objects into a set: This is the human ability to recognize similarities in different objects. Usually, a collection, or group, consists of objects that somehow belong together, objects that share a common property. While a mathematical set could also be a completely arbitrary collection of unrelated objects, this is usually not what we want to count. We count coins or hours or people, but we usually do not mix these categories." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"Most mathematicians are not particularly worried by the fact that there are natural numbers so huge that they cannot be conceptualized exactly. Typically, when applying numbers to reality, approximate quantities are sufficient, and extremely large numbers would rarely be needed. In theory, the natural numbers are just a sequence whose structure is axiomatically described by the Peano axioms. As a mathematician, one typically does not care about the practical realizability of particular numbers. That every number has a unique successor is simply true by assumption; it needs no practical verification." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"The branch of philosophy of mathematics that would not accept objects or expressions that nobody can construct in any practical sense is called ultrafinitism. According to this view, not even the concept of natural numbers would be accepted without restrictions, and, of course, an ultrafinitist would refuse to talk about infinity. To most mathematicians, this view would be too extreme. Reducing mathematics to finite and not-too-large objects would restrict mathematics and its usefulness in an intolerable way." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"The words 'imaginary' and 'complex' again demonstrate how difficult it is to make a major change in conceptual systems - a difficulty that we already encountered with negative numbers, fractions, zero, and irrational numbers. The word 'imaginary' tells us that these numbers are unreal from the perspective of someone grounded in the real number system." (William Byers, "Deep Thinking: What Mathematics Can Teach Us About the Mind", 2015)
"A transcendental number is defined as a number that isn’t the solution of any polynomial equation with integer constants times the x’s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"[…] the equation’s five seemingly unrelated numbers" (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"[…] the story of π is the deeply ironic tale of one thinker after another trying to nail down the size of a number that is fundamentally immeasurable." (Because it’s irrational.)" (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Zero seems as diaphanous as a fairy’s wing, yet it is as powerful as a black hole. The obverse of infinity, it’s enthroned at the center of the number line - at least as the line is usually drawn - making it a natural center of attention. It has no effect when added to other numbers, as if it were no more substantial than a fleeting thought. But when multiplied times other numbers it seems to exert uncanny power, inexorably sucking them in and making them vanish into itself at the center of things. If you’re into stark simplicity, you can express any number" (that is, any number that’s capable of being written out) with the use of zero and just one other number, one." (David Stipp,"A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)
"A transcendental number is defined as a number that isn’t the solution of any polynomial equation with integer constants times the x’s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Algebraic geometry uses the geometric intuition which arises from looking at varieties over the complex and real case to deduce important results in arithmetic algebraic geometry where the complex number field is replaced by the field of rational numbers or various finite number fields." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)
"All methods of dealing with big data require a vast number of mind-numbing, tedious, boring mathematical steps." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"An estimate" (the mathematical definition) is a number derived from observed values that is as close as we can get to the true parameter value. Useful estimators are those that are 'better' in some sense than any others." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"At first glance, the number e, known in mathematics as Euler’s number, doesn’t seem like much. It’s about 2.7, a quantity of such modest size that it invites contempt in our age of wretched excess and relentless hype." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Bombelli’s discovery showed that it was necessary to treat apparently meaningless imaginary-number-based solutions as legitimate numbers in order to find such hidden real-number solutions. That meant the imaginaries could no longer be cavalierly pig-troughed." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"But here’s a curious thing about modest little e that sets it apart from bombastic numbers that end in scads of zeros: no matter how long you allow the computer to crank away with ever larger numbers for n, you’ll never be able to calculate its exact numerical value. That’s because the digits to the right of e’s decimal point go on forever in a random pattern - Euler actually established this in 1737. In other words, e effectively encapsulates the infinite." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"But the number i is special for a decidedly different sort of reason - it’s math’s version of the ugly duckling. [...] The geometric interpretation of e^iπ is rich with emblematic potential. You could see its suggestion of a 180-degree spin as standing for a soldier’s about-face, a ballet dancer’s half pirouette, a turnaround jump shot, the movement of someone setting out on a long journey who looks back to wave farewell, the motion of the sun from dawn to dusk, the changing of the seasons from winter to summer, the turning of the tide. You could also associate it with turning the tables on someone, a reversal of fortune, turning one’s life around, the transformation of Dr. Jekyll into Mr. Hyde" (and vice versa), the pivoting away from loss or regret to face the future, the ugly duckling becoming a beauty, drought giving way to rain. You might even interpret its highlighting of opposites as an allusion to elemental dualities—shadow and light, birth and death, yin and yang." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Clearly e is different from child-safe numbers such as four or 10, which wouldn’t dream of inducing sudden loss of cranial integrity. But this wantonness isn’t peculiar to e. In fact, the number line is chock full of numbers, like e, whose decimal representations are effectively infinite. They’re called irrational numbers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Euler’s general formula, e^iθ = cos θ + i sin θ, also played a role in bringing about the happy ending of the imaginaries’ ugly duckling story. [...] Euler showed that e raised to an imaginary-number power can be turned into the sines and cosines of trigonometry." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Ever since the discovery of irrational numbers fractured the Greek belief that all numbers were proportions, mathematicians have sorted numbers into categories and hunted for numbers that defied existing categories." (David Perkins, "φ, π, e & i", 2017)
"Just because there’s a number on it, it doesn’t mean that the number was arrived at properly. […] There are a host of errors and biases that can enter into the collection process, and these can lead millions of people to draw the wrong conclusions. Although most of us won’t ever participate in the collection process, thinking about it, critically, is easy to learn and within the reach of all of us." (Daniel J Levitin, "Weaponized Lies", 2017)
"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Since it’s impossible to express an irrational number such as π as a fraction, the quest for a fraction equal to π could never be successful. Ancient mathematicians didn’t know that, however. As noted above, it wasn’t until the eighteenth century that the irrationality of π was demonstrated. Their labors weren’t in vain, though. While enthusiastically pursuing their fundamentally doomed enterprise, they developed a lot of interesting mathematics as well as impressively accurate approximations of π." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"So here’s the main reason that Euler’s formula is flabbergasting: the top five celebrity numbers of all time appear together in it with no other numbers." (In addition, it includes three primordial peers from arithmetic: +, =, and exponentiation.) This conjunction of important numbers, which sprang up in different contexts in math and thus would seem to be completely unrelated, is staggering, and it accounts for much of the hullabaloo about the equation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Statistics, because they are numbers, appear to us to be cold, hard facts. It seems that they represent facts given to us by nature and it’s just a matter of finding them. But it’s important to remember that people gather statistics. People choose what to count, how to go about counting, which of the resulting numbers they will share with us, and which words they will use to describe and interpret those numbers. Statistics are not facts. They are interpretations. And your interpretation may be just as good as, or better than, that of the person reporting them to you." (Daniel J Levitin, "Weaponized Lies", 2017)
"The elements of this cloud of uncertainty" (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"The very idea of raising a number to an imaginary power may well have seemed to most of the era’s mathematicians like asking the ghost of a late amphibian to jump up on a harpsichord and play a minuet." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Then there’s the fact that if you treat infinity like a number and try to do arithmetic with it, you soon find yourself drawing wacky-sounding conclusions like 'infinity plus infinity is equal to infinity, and therefore infinity is twice as big as itself'." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"When we use algebraic notation in statistical models, the problem becomes more complicated because we cannot 'observe' a probability and know its exact number. We can only estimate probabilities on the basis of observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"Zero seems as diaphanous as a fairy’s wing, yet it is as powerful as a black hole. The obverse of infinity, it’s enthroned at the center of the number line - at least as the line is usually drawn - making it a natural center of attention. It has no effect when added to other numbers, as if it were no more substantial than a fleeting thought. But when multiplied times other numbers it seems to exert uncanny power, inexorably sucking them in and making them vanish into itself at the center of things. If you’re into stark simplicity, you can express any number" (that is, any number that’s capable of being written out) with the use of zero and just one other number, one." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"Mathematics has, of course, much to say about the more technical aspects of music, such as the tuning of musical instruments or the design of acoustically satisfying concert halls. But as to its influence on music as an art, it was, with a few notable exceptions, rather limited; the two disciplines simply followed their own separate ways." (Eli Maor, "Music by the Numbers: From Pythagoras to Schoenberg", 2018)
"Quaternions are not actual extensions of imaginary numbers, and they are not taking complex numbers into a multi-dimensional space on their own. Quaternion units are instances of some number-like object type, identified collectively, but they are not numbers" (be it real or imaginary). In other words, they form a closed, internally consistent set of object instances; they can of course be plotted visually on a multi-dimensional space but this only is a visualization within their own definition." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)
"The existing definition of imaginary numbers is solely based on the fact that certain mathematical operation, square operation, would not yield certain type of outcome, negative numbers; hence such operational outcome could only be imagined to exist. Although complex numbers actually form the largest set of numbers, it appears that almost no thought has been given until now into the full extent of all possible types of imaginary numbers." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)
"The significance of Fourier’s theorem to music cannot be overstated: since every periodic vibration produces a musical sound" (provided, of course, that it lies within the audible frequency range), it can be broken down into its harmonic components, and this decomposition is unique; that is, every tone has one, and only one, acoustic spectrum, its harmonic fingerprint. The overtones comprising a musical tone thus play a role somewhat similar to that of the prime numbers in number theory: they are the elementary building blocks from which all sound is made." (Eli Maor, "Music by the Numbers: From Pythagoras to Schoenberg", 2018)
"We tend to think of maths as being an 'exact' discipline, where answers are right or wrong. And it's true that there is a huge part of maths that is about exactness. But in everyday life, numerical answers are sometimes just the start of the debate. If we are trained to believe that every numerical question has a definite, 'right' answer then we miss the fact that numbers in the real world are a lot fuzzier than pure maths might suggest." (Rob Eastaway, "Maths on the Back of an Envelope", 2019)
No comments:
Post a Comment