31 July 2021

On Logic (1900-1909)

"If geometry is to serve as a model for the treatment of physical axioms, we shall try first by a small number of axioms to include as large a class as possible of physical phenomena, and then by adjoining new axioms to arrive gradually at the more special theories. […] The mathematician will have also to take account not only of those theories coming near to reality, but also, as in geometry, of all logically possible theories. We must be always alert to obtain a complete survey of all conclusions derivable from the system of axioms assumed." (David Hilbert, 1900)

"Our science, in contrast with others, is not founded on a single period of human history, but has accompanied the development of culture through all its stages. Mathematics is as much interwoven with Greek culture as with the most modern problems in Engineering. She not only lends a hand to the progressive natural sciences but participates at the same time in the abstract investigations of logicians and philosophers." (Felix Klein, "Klein und Riecke: Ueber angewandte Mathematik und Physik" 1900)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Mathematical science is in my opinion an indivisible whole, an organism whose vitality is conditioned upon the connection of its parts. For with all the variety of mathematical knowledge, we are still clearly conscious of the similarity of the logical devices, the relationship of the ideas in mathematics as a whole and the numerous analogies in its different departments." (David Hilbert, "Mathematical Problems", Bulletin American Mathematical Society Vol. 8, 1901-1902)

"The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." (Bertrand Russell, "Principles of Mathematics", 1903)

"Mathematical knowledge, therefore, appears to us of value not only in so far as it serves as means to other ends, but for its own sake as well, and we behold, both in its systematic external and internal development, the most complete and purest logical mind-activity, the embodiment of the highest intellect-esthetics." (Alfred Pringsheim, "Ueber Wert und angeblichen Unwert der Mathe-  matik", Jahresbencht der Deutschen Mathematiker Vereinigung, Bd 13, 1904)

"The most ordinary things are to philosophy a source of insoluble puzzles. In order to explain our perceptions it constructs the concept of matter and then finds matter quite useless either for itself having or for causing perceptions in a mind. With infinite ingenuity it constructs a concept of space or time and then finds it absolutely impossible that there be objects in this space or that processes occur during this time [...] The source of this kind of logic lies in excessive confidence in the so-called laws of thought." (Ludwig E Boltzmann, "On Statistical Mechanics", 1904)

"It is the intuition of pure number, that of pure logical forms, which illumines and directs those we have called analysts. This it is which enables them not alone to demonstrate, but also to invent." (Henri Poincaré, "The Value of Science", 1905)

"Logic, then, is not necessarily an instrument for finding truth; on the contrary, truth is necessarily an instrument for using logic - for using it, that is, for the discovery of further truth and for the profit of humanity. Briefly, you can only find truth with logic if you have already found truth without it." (Gilbert K Chesterton, Daily News, 1905)

"The chief end of mathematical instruction is to develop certain powers of the mind, and among these the intuition is not the least precious. By it the mathematical world comes in contact with the real world, and even if pure mathematics could do without it, it would always be necessary to turn to it to bridge the gulf between symbol and reality. The practician will always need it, and for one mathematician there are a hundred practicians. However, for the mathematician himself the power is necessary, for while we demonstrate by logic, we create by intuition; and we have more to do than to criticize others’ theorems, we must invent new ones, this art, intuition teaches us." (Henri Poincaré, "The Value of Science", 1905)

"We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary. To designate this something else we have no word other than intuition. But how many different ideas are hidden under this same word?" (Henri Poincaré , "Intuition and Logic in Mathematics", 1905)

"Diagrammatic reasoning is the only really fertile reasoning. If logicians would only embrace this method, we should no longer see attempts to base their science on the fragile foundations of metaphysics or a psychology not based on logical theory; and there would soon be such an advance in logic that every science would feel the benefit of it." (Charles S Peirce, "Prolegomena to an Apology for Pragmaticism", Monist 16(4), 1906)

"Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré," Science and Method", 1908)

"It has been argued that mathematics is not or, at least, not exclusively an end in itself; after all it should also be applied to reality. But how can this be done if mathematics consisted of definitions and analytic theorems deduced from them and we did not know whether these are valid in reality or not. One can argue here that of course one first has to convince oneself whether the axioms of a theory are valid in the area of reality to which the theory should be applied. In any case, such a statement requires a procedure which is outside logic." (Ernst Zermelo, „Mathematische Logik - Vorlesungen gehalten von Prof. Dr. E. Zermelo zu Göttingen im S. S", 1908)

"It is by logic that we prove, but by intuition that we discover. [...] Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré, "Science and Method", 1908)

"It is by logic that we prove, but by intuition that we discover. To know how to criticize is good, to know how to create is better." (Henri Poincaré, "Science and Method", 1908)

"Symbolic Logic is Mathematics, Mathematics is Symbolic Logic, the twain are one." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...