20 July 2021

On Reality (1990-1999)

"Today’s quarks and leptons can be viewed as metaphors of the underlying reality of nature, though metaphors that are objectively and rationally defied and are components of theories that have great predictive power. And that’s the difference between the metaphors of science and those of myth: scientific metaphors work." (Victor J Stenger, "Physics and Psychics: The Search for a World Beyond the Senses", 1990)

"We build mental models that represent significant aspects of our physical and social world, and we manipulate elements of those models when we think, plan, and try to explain events of that world. The ability to construct and manipulate valid models of reality provides humans with our distinctive adaptive advantage; it must be considered one of the crowning achievements of the human intellect." (Gordon H Bower & Daniel G Morrow, 1990)

"A model can not be proved to be correct; at best it can only be found to be reasonably consistant and not to contradict some of our beliefs of what reality is." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"A model is often judged by how well it "explains" some observations. There need not be a unique model for a particular situation, nor need a model cover every possible special case. A model is not reality, it merely helps to explain some of our impressions of reality. [...] Different models may thus seem to contradict each other, yet we may use both in their appropriate places." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"The dreams of people are in the machines, a planet network of active imaginations hooked into their made-up, make-believe worlds. Artificial reality is taking over; it has its own children." (Storm Constantine, "Immaculate" (1991)

"The scope of Theories of Everything is infinite but bounded; they are necessary parts of a full understanding of things but they are far from sufficient to reveal everything about a Universe like ours. In the pages of this book, we have seen something of what a Theory of Everything might hope to teach us about the unity of the Universe and the way in which it may contain elements that transcend our present compartmentalized view of Nature's ingredients. But we have also learnt that there is more to Everything than meets the eye. Unlike many others that we can imagine, our world contains prospective elements. Theories of Everything can make no impression upon predicting these prospective attributes of reality; yet, strangely, many of these qualities will themselves be employed in the human selection and approval of an aesthetically acceptable Theory of Everything. There is no formula that can deliver all truth, all harmony, all simplicity. No Theory of Everything can ever provide total insight. For, to see through everything, would leave us seeing nothing at all." (John D Barrow, "New Theories of Everything", 1991)

"There is one qualitative aspect of reality that sticks out from all others in both profundity and mystery. It is the consistent success of mathematics as a description of the workings of reality and the ability of the human mind to discover and invent mathematical truths." (John D Barrow, "Theories of Everything: The quest for ultimate explanation", 1991)

"A model is something one tries to construct when one has to describe a complicated situation. A model is therefore an approximate description of reality and invariably involves many simplifying assumptions. […] models are convenient idealisations." (Ganeschan Venkataraman, "Chandrasekhar and His Limit", 1992)

"Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors." (John Casti, "Reality Rules", 1992)

"Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors." (John L Casti, "Reality Rules, The Fundamentals", 1992)

"One of the deepest problems of nature is the success of mathematics as a language for describing and discovering features of physical reality." (Peter Atkins, "Creation Revisited" 1992)

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"Physicists’ models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius", 1992)

"The binary logic of modern computers often falls short when describing the vagueness of the real world. Fuzzy logic offers more graceful alternatives." (Bart Kosko & Satoru Isaka, "Fuzzy Logic,” Scientific American Vol. 269, 1993)

"A world view is a system of co-ordinates or a frame of reference in which everything presented to us by our diverse experiences can be placed. It is a symbolic system of representation that allows us to integrate everything we know about the world and ourselves into a global picture, one that illuminates reality as it is presented to us within a certain culture. […] A world view is a coherent collection of concepts and theorems that must allow us to construct a global image of the world, and in this way to understand as many elements of our experience as possible." (Diederick Aerts et al, "World views: From Fragmentation to Integration", 1994)

"Nature is not ‘given’ to us - our minds are never virgin in front of reality. Whatever we say we see or observe is biased by what we already know, think, believe, or wish to see. Some of these thoughts, beliefs and knowledge can function as an obstacle to our understanding of the phenomena. […] mathematics is not a natural science. It is not about the phenomena of the real world, it is not about observation and induction. Mathematical induction is not a method for making generalizations." (Anna Sierpinska, "Understanding in Mathematics", 1994)

"What are the models? Well, the first rule is that you’ve got to have multiple models - because if you just have one or two that you’re using, the nature of human psychology is such that you’ll torture reality so that it fits your models, or at least you’ll think it does." (Charles Munger, 1994)

"I do not know that my view is more correct; I do not even think that ‘right’ and ‘wrong’ are good categories for assessing complex mental models of external reality - for models in science are judged [as] useful or detrimental, not as true or false." (Stephen J Gould, "Dinosaur in a Haystack: Reflections in Natural History", 1995)

"Mathematics is not the study of an ideal, preexisting nontemporal reality. Neither is it a chess-like game with made-up symbols and formulas. Rather, it is the part of human studies which is capable of achieving a science-like consensus, capable of establishing reproducible results. The existence of the subject called mathematics is a fact, not a question. This fact means no more and no less than the existence of modes of reasoning and argument about ideas which are compelling an conclusive, ‘noncontroversial when once understood’." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1995)

"Perhaps we all lose our sense of reality to the precise degree to which we are engrossed in our own work, and perhaps that is why we see in the increasing complexity of our mental constructs a means for greater understanding, even while intuitively we know that we shall never be able to fathom the imponderables that govern our course through life." (Winfried G Sebald, "The Rings of Saturn", 1995)

"While the equations represent the discernment of eternal and universal truths, however, the manner in which they are written is strictly, provincially human. That is what makes them so much like poems, wonderfully artful attempts to make infinite realities comprehensible to finite beings." (Michael Guillen," Five Equations That Changed the World", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem … create a shared social reality […] a shared understanding of the problem and potential solutions … to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"The logic of the emotional mind is associative; it takes elements that symbolize a reality, or trigger a memory of it, to be the same as that reality. That is why similes, metaphors and images speak directly to the emotional mind." (Daniel Goleman, "Emotional Intelligence", 1996)

"A model is a deliberately simplified representation of a much more complicated situation. […] The idea is to focus on one or two causal or conditioning factors, exclude everything else, and hope to understand how just these aspects of reality work and interact." (Robert M Solow, "How Did Economics Get That Way and What Way Did It Get?", Daedalus, Vol. 126, No. 1, 1997)

"Reality contains not only evidence, but also the means (such as our minds, and our artefacts) of understanding it. There are mathematical symbols in physical reality. The fact that it is we who put them there does not make them any less physical." (David Deutsch, "The Fabric of Reality", 1997)

"Shearing away detail is the very essence of model building. Whatever else we require, a model must be simpler than the thing modeled. In certain kinds of fiction, a model that is identical with the thing modeled provides an interesting device, but it never happens in reality. Even with virtual reality, which may come close to this literary identity one day, the underlying model obeys laws which have a compact description in the computer - a description that generates the details of the artificial world." (John H Holland, "Emergence" , Philosophica 59, 1997)

"Despite being partly familiar to all, because of these contradictory aspects, mathematics remains an enigma and a mystery at the heart of human culture. It is both the language of the everyday world of commercial life and that of an unseen and perfect virtual reality. It includes both free-ranging ethereal speculation and rock-hard certainty. How can this mystery be explained? How can it be unraveled? The philosophy of mathematics is meant to cast some light on this mystery: to explain the nature and character of mathematics. However this philosophy can be purely technical, a product of the academic love of technique expressed in the foundations of mathematics or in philosophical virtuosity. Too often the outcome of philosophical inquiry is to provide detailed answers to the how questions of mathematical certainty and existence, taking for granted the received ideology of mathematics, but with too little attention to the deeper why questions." (Paul Ernest, "Social Constructivism as a Philosophy of Mathematics", 1998)

"The point is that scientific descriptions of phenomena in all of these cases do not fully capture reality they are models. This is not a shortcoming but a strength of science much of the scientist's art lies in figuring out what to include and what to exclude in a model, and this ability allows science to make useful predictions without getting bogged down by intractable details." (Philip Ball," The Self-Made Tapestry: Pattern Formation in Nature", 1998)

"Theories rarely arise as patient inferences forced by accumulated facts. Theories are mental constructs potentiated by complex external prods (including, in idealized cases, a commanding push from empirical reality)." (Stephen J Gould, "Leonardo's Mountain of Clams and the Diet of Worms" , 1998)

"A model is an external and explicit representation of part of reality as seen by the people who wish to use that model to understand, to change, to manage, and to control that part of reality in some way or other." (Michael Pidd, "Just Modeling through: A Rough Guide to Modeling", Interfaces, Vol. 29, No. 2, 1999)

"A vision is a clear mental picture of a desired future outcome. If you have ever put together a large 1,000-piece jigsaw puzzle, the chances are you used the picture on the top of the puzzle box to guide the placement of the pieces. That picture on the top of the box is the end result or the vision of what you are trying to turn into a reality. It is much more difficult - if not impossible - to put the jigsaw puzzle together without ever looking at the picture." (Jane Flaherty & Peter B Stark, "The Manager's Pocket Guide to Leadership Skills", 1999)

"Every culture has a shared pattern of thinking. It is the cement that holds a culture together, gives it unity. A culture's characteristic way of thinking is imbedded in its concept of the nature of reality, its world view. […] A change of world view not only brings about profound cultural changes, but also is responsible for what historians call a ‘change of age’. An age is a period of time in which the prevailing world view has remained relatively unchanged." (Russell L Ackoff, "Re-Creating the Corporation", 1999)

"Models form extraordinarily powerful and economical ways of thinking about the world. In fact they are often so good that the model is confused with reality." (David Stirzaker, "Probability and Random Variables: A Beginner's Guide", 1999)

"Simple observation generally gets us nowhere. It is the creative imagination that increases our understanding by finding connections between apparently unrelated phenomena, and forming logical, consistent theories to explain them. And if a theory turns out to be wrong, as many do, all is not lost. The struggle to create an imaginative, correct picture of reality frequently tells us where to go next, even when science has temporarily followed the wrong path." (Richard Morris, "The Universe, the Eleventh Dimension, and Everything: What We Know and How We Know It", 1999)

"Surveying the bewildering damage from some historical hurricanes, an outside observer might wonder whether builders were suffering under the illusion of a chaos-free environment: one governed by underestimated deterministic forces. Of course, in reality, dynamical chaos is intrinsic to the atmosphere, and contributes significantly to the aleatory uncertainty in wind loading. It may take more than the flap of a butterfly’s wings to change a hurricane forecast, but chaos imposes a fundamental practical limit to windstorm prediction capability." (Gordon Woo, "The mathematics of natural catastrophes", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...