22 July 2021

On Universe (1990-1999)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Probability does pervade the universe, and in this sense, the old chestnut about baseball imitating life really has validity. The statistics of streaks and slumps, properly understood, do teach an important lesson about epistemology, and life in general. The history of a species, or any natural phenomenon, that requires unbroken continuity in a world of trouble, works like a batting streak. All are games of a gambler playing with a limited stake against a house with infinite resources. The gambler must eventually go bust. His aim can only be to stick around as long as possible, to have some fun while he's at it, and, if he happens to be a moral agent as well, to worry about staying the course with honor!" (Stephen J Gould, 1991)

"The inflationary period of expansion does not smooth out irregularity by entropy-producing processes like those explored by the cosmologies of the seventies. Rather it sweeps the irregularity out beyond the Horizon of our visible Universe, where we cannot see it . The entire universe of stars and galaxies on view to us. […] on this hypothesis, is but the reflection of a minute, perhaps infinitesimal, portion of the universe's initial conditions, whose ultimate extent and structure must remain forever unknowable to us. A theory of everything does not help here. The information contained in the observable part of the universe derives from the evolution of a tiny part of the initial conditions for the entire universe. The sum total of all the observations we could possibly make can only tell us about a minuscule portion of the whole." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"The scope of Theories of Everything is infinite but bounded; they are necessary parts of a full understanding of things but they are far from sufficient to reveal everything about a Universe like ours. In the pages of this book, we have seen something of what a Theory of Everything might hope to teach us about the unity of the Universe and the way in which it may contain elements that transcend our present compartmentalized view of Nature's ingredients. But we have also learnt that there is more to Everything than meets the eye. Unlike many others that we can imagine, our world contains prospective elements. Theories of Everything can make no impression upon predicting these prospective attributes of reality; yet, strangely, many of these qualities will themselves be employed in the human selection and approval of an aesthetically acceptable Theory of Everything. There is no formula that can deliver all truth, all harmony, all simplicity. No Theory of Everything can ever provide total insight. For, to see through everything, would leave us seeing nothing at all." (John D Barrow, "New Theories of Everything", 1991)

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"A religion old or new, that stressed the magnificence of the universe as revealed by modern science, might be able to draw forth reserves of reverence and awe hardly tapped by the conventional faiths. Sooner or later such a religion will emerge." (Carl Sagan, "Pale Blue Dot: a Vision of the Human Future in Space", 1994)

"If we imagine mathematics as a grand orchestra, the system of whole numbers could be likened to a bass drum: simple, direct, repetitive, providing the underlying rhythm for all the other instruments. There surely are more sophisticated concepts - the oboes and French horns and cellos of mathematics - and we examine some of these in later chapters. But whole numbers are always at the foundation." (William Dunham, "The Mathematical Universe", 1994)

"Minkowski, building on Einstein's work, had now discovered that the Universe is made of a four-dimensional ‘spacetime’ fabric that is absolute, not relative." (Kip S Thorne, "Black Holes and Time Warps: Einstein's Outrageous Legacy" , 1994)

"A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This grade corresponds to the degree to which that individual is similar or compatible with the concept represented by the fuzzy set. Thus, individuals may belong in the fuzzy act to a greater or lesser degree as indicated by a larger or smaller membership grade. As already mentioned, these membership grades are very often represented by real-number values ranging in the closed interval between 0 and 1." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"An essential element of dynamics systems is a positive feedback that self-enhances the initial deviation from the mean. The avalanche is proverbial. Cities grow since they attract more people, and in the universe, a local accumulation of dust may attract more dust, eventually leading to the birth of a star. Earlier or later, self-enhancing processes evoke an antagonistic reaction. A collapsing stock market stimulates the purchase of shares at a low price, thereby stabilizing the market. The increasing noise, dirt, crime and traffic jams may discourage people from moving into a big city." (Hans Meinhardt, "The Algorithmic Beauty of Sea Shells", 1995)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, "Life in the Quantum Universe", Scientific American, 1995)

"Humans may crave absolute certainty; they may aspire to it; they may pretend, as partisans of certain religions do, to have attained it. But the history of science - by far the most successful claim to knowledge accessible to humans - teaches that the most we can hope for is successive improvement in our understanding, learning from our mistakes, an asymptotic approach to the Universe, but with the proviso that absolute certainty will always elude us. We will always be mired in error. The most each generation can hope for is to reduce the error bars a little, and to add to the body of data to which error bars apply." (Carl Sagan, "The Demon-Haunted World: Science as a Candle in the Dark", 1995)

"Much of what the universe had been, was, and would be, Newton had disclosed, was the outcome of an infinity of material particles all pulling on one another simultaneously. If the result of all that gravitational tussling had appeared to the Greeks to be a cosmos, it was simply because the underlying equation describing their behavior had itself turned out to be every bit a cosmos-orderly, beautiful, and decent." (Michael Guillen," Five Equations That Changed the World", 1995)

"The Law of Entropy Nonconservation required that life be lived forward, from birth to death. […] To wish for the reverse was to wish for the entropy of the universe to diminish with time, which was impossible. One might as well wish for autumn leaves to assemble themselves in neat stacks just as soon as they had fallen from trees or for water to freeze whenever it was heated." (Michael Guillen, "Five Equations That Changed the World", 1995)

"Yet everything has a beginning, everything comes to an end, and if the universe actually began in some dense explosion, thus creating time and space, so time and space are themselves destined to disappear, the measure vanishing with the measured, until with another ripple running through the primordial quantum field, something new arises from nothingness once again." (David Berlinski, "A Tour of the Calculus", 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"Numbers, in fact, are the atoms of the universe, combining with everything else." (Calvin C Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers", 1996)

"Our mental model of the way the world works must shift from images of a clockwork, machinelike universe that is fixed and determined, to the model of a universe that is open, dynamic, interconnected, and full of living qualities." (Joseph Jaworski, "Synchronicity: The Inner Path of Leadership", 1996)

"Science is distinguished not for asserting that nature is rational, but for constantly testing claims to that or any other affect by observation and experiment." (Timothy Ferris, "The Whole Shebang: A State-of-the Universe’s Report", 1996)

"In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world." (Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997)

"Intriguingly, the mathematics of randomness, chaos, and order also furnishes what may be a vital escape from absolute certainty - an opportunity to exercise free will in a deterministic universe. Indeed, in the interplay of order and disorder that makes life interesting, we appear perpetually poised in a state of enticingly precarious perplexity. The universe is neither so crazy that we can’t understand it at all nor so predictable that there’s nothing left for us to discover." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1997)

"Is God a mathematician? Certainly, the world, the universe, and nature can be reliably understood using mathematics. Nature is mathematics." (Clifford A Pickover, "The Loom of God", 1997)

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"There is no end to discoveries in mathematics just as there is no end to the mystery of the universe. Both are boundless. Hence mathematics is not so much a body of knowledge as a way of thought with inexhaustible possibilities." (Karma V Mital, "Understanding Mathematics And Computers" , 1997)

"Good theories are the ones that get those predictions right; the best theories enable us to 'get right' the calculation of how the Universe came into being and then exploded into its present form. But that doesn’t mean that they convey ultimate truth, or that there ‘really are’ little hard particles rattling around against each other inside the atom. Such truth as there is in any of this work lies in the mathematics; the particle concept is simply a crutch ordinary mortals can use to help them towards an understanding of the mathematical laws." (John R Gribbin, "The Search of Superstrings, Symmetry, and the Theory of Everything", 1998)

"In an infinite universe, every point in space-time is the center." (David Zindell, "War in Heaven", 1998)

"Mathematics is a product - a discovery - of the human mind. It enables us to see the incredible, simple, elegant, beautiful, ordered structure that lies beneath the universe we live in. It is one of the greatest creations of mankind - if it is not indeed the greatest." (Keith Devlin, "Life By the Numbers", 1998)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Partial models, imperfect as they may be, are the only means developed by science for understanding the universe. This statement does not imply an attitude of defeatism but the recognition that the main tool of science is the human mind and that the human mind is finite." (Nancy Cartwright, "The Dappled World: A Study of the Boundaries of Science", 1999)

"The classic example of chaos at work is in the weather. If you could measure the positions and motions of all the atoms in the air at once, you could predict the weather perfectly. But computer simulations show that tiny differences in starting conditions build up over about a week to give wildly different forecasts. So weather predicting will never be any good for forecasts more than a few days ahead, no matter how big (in terms of memory) and fast computers get to be in the future. The only computer that can simulate the weather is the weather; and the only computer that can simulate the Universe is the Universe." (John Gribbin, "The Little Book of Science", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...