"[…] mathematics can never prove anything. No mathematics has any content. All any mathematics can do is – sometimes – turn out to be useful in describing some aspects of our so-called ‘physical universe’. That is a bonus; most forms of mathematics are as meaning-free as chess." (Robert A Heinlein, "The Number of the Beast", 1980)
"In natural science we are concerned ultimately, not with convenient arrangements of observational data which can be generalized into universal explanatory form, but with movements of thought, at once theoretical and empirical, which penetrate into the intrinsic structure of the universe in such a way that there becomes disclosed to us its basic design and we find ourselves at grips with reality.… We cannot pursue natural science scientifically without engaging at the same time in meta-scientific operations." (Thomas F Torrance, "Divine and Contingent Order", 1981)
"In the initial stages of research, mathematicians do not seem to function like theorem-proving machines. Instead, they use some sort of mathematical intuition to ‘see’ the universe of mathematics and determine by a sort of empirical process what is true. This alone is not enough, of course. Once one has discovered a mathematical truth, one tries to find a proof for it." (Rudy Rucker, "Infinity and the Mind: The science and philosophy of the infinite", 1982)
"The vision of the Universe that is so vivid in our minds is framed by a few iron posts of true observation - themselves resting on theory for their meaning - but most of all the walls and towers in the vision are of papier-mâché, plastered in between those posts by an immense labor of imagination and theory." (John A Wheeler & Wojciech H Zurek, "Quantum Theory and Measurement", 1983)
"Mathematical research should be as broad and as original as possible, with very long range-goals. We expect history to repeat itself: we expect that the most profound and useful future applications of mathematics cannot be predicted today, since they will arise from mathematics yet to be discovered." (Arthur Jaffe, "Ordering the universe: the role of mathematics", SIAM Review Vol 26. No 4, 1984)
"The equations of physics have in them incredible simplicity, elegance and beauty. That in itself is sufficient to prove to me that there must be a God who is responsible for these laws and responsible for the universe" (Paul C W Davies, 1984)
"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985)
"The nothingness ‘before’ the creation of the universe is the most complete void that we can imagine - no space, time, or matter existed. It is a world without place, without duration or eternity, without number - it is what mathematicians call ‘the empty set’. Yet this unthinkable void converts itself into the plenum of existence - a necessary consequence of physical laws. Where are these laws written into that void? What ‘tells’ the void that is pregnant with a possible universe? It would seem that, even the void is subject to law, a logic that exists prior to space and time." (Heinz R Pagels, "Perfect Symmetry: The Search for the Beginning of Time", 1985)
"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)
"Science is not a given set of answers but a system for obtaining answers. The method by which the search is conducted is more important than the nature of the solution. Questions need not be answered at all, or answers may be provided and then changed. It does not matter how often or how profoundly our view of the universe alters, as long as these changes take place in a way appropriate to science. For the practice of science, like the game of baseball, is covered by definite rules." (Robert Shapiro, "Origins: A Skeptic’s Guide to the Creation of Life on Earth", 1986)
"Somehow, after all, as the universe ebbs toward its final equilibrium in the featureless heat bath of maximum entropy, it manages to create interesting structures." (James Gleick, "Chaos: Making a New Science", 1987)
"The increase of disorder or entropy with time is one example of what is called an arrow of time something that gives a direction to time and distinguishes the past from the future. There are at least three different directions of time. First, there is the thermodynamic arrow of time - the direction of time in which disorder or entropy increases. Second, there is the psychological arrow of time. This is the direction in which we feel time passes - the direction of time in which we remember the past, but not the future. Third, there is the cosmological arrow of time. This is the direction of time in which the universe is expanding rather than contracting." (Stephen W. Hawking, "The Direction of Time", New Scientist 46, 1987)
"Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen W Hawking, "A Brief History of Time: From the Big Bang to Black Holes", 1988)
"In an infinite number universe, every point can be regarded as the center, because every point has an infinite of stars on each side of it." (Stephen Hawking, "A Brief History of Time", 1988)
"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)
"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible. As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death. Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)
"The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen Hawking, "A Brief History of Time", 1988)
"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage", 1988)
"The view of science is that all processes ultimately run down, but entropy is maximized only in some far, far away future. The idea of entropy makes an assumption that the laws of the space-time continuum are infinitely and linearly extendable into the future. In the spiral time scheme of the timewave this assumption is not made. Rather, final time means passing out of one set of laws that are conditioning existence and into another radically different set of laws. The universe is seen as a series of compartmentalized eras or epochs whose laws are quite different from one another, with transitions from one epoch to another occurring with unexpected suddenness." (Terence McKenna, "True Hallucinations", 1989)
No comments:
Post a Comment