31 July 2021

On Logic (1850-1874)

"The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." (James C Maxwell, 1850)

"[Algebra] has for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way arithmetic may be defined as destined to the determination of the values of functions. […] We will briefly say that Algebra is the Calculus of functions, and Arithmetic is the Calculus of Values." (Auguste Comte, "Philosophy of Mathematics", 1851)

"It is, after all, a principle of logic not to multiply entities unnecessarily." (Antoine-Laurent Lavoisier, "Réflexions sur le phlogistique", 1862)

"There is a kind, I might almost say, of artistic satisfaction, when we are able to survey the enormous wealth of Nature as a regularly ordered whole - a kosmos, an image of the logical thought of our own mind." (Hermann von Helmholtz. "On the Conservation of Force", 1862)

"If an idea presents itself to us, we must not reject it simply because it does not agree with the logical deductions of a reigning theory." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"The purely formal sciences, logic and mathematics, deal with such relations which are independent of the definite content, or the substance of the objects, or at least can be. In particular, mathematics involves those relations of objects to each other that involve the concept of size, measure, number." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"I think it would be desirable that this form of word [mathematics] should be reserved for the applications of the science, and that we should use mathematic in the singular to denote the science itself, in the same way as we speak of logic, rhetoric, or (own sister to algebra) music." (James J Sylvester, [Presidential Address to the British Association] 1869)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)

"With Algebra we enter a new sphere, that of symbolical quantities; here letters are symbols of any values we please; all we deal with in them is the relations of equality which the letters symbolise. Although the values are changeable, jet, once assigned, they must remain fixed throughout the operation. Illogical reasoning, in philosophic as in ordinary minds, is not due to any irregularity in the normal operation, but to a departure from the values assigned." (George H Lewes "Problems of Life and Mind", 1873)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...