31 July 2021

On Logic (1990-1999)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"The most persuasive positive argument for mental images as objects is [that] whenever one thinks one is seeing something there must be something one is seeing. It might be an object directly, or it might be a mental picture. [This] point is so plausible that it is deniable only at the peril of becoming arbitrary. One should concede that the question whether mental images are entities of some sort is not resolvable by logical or linguistic analysis, and believe what makes sense of experience." (Eva T H Brann,"The World of Imagination" , 1991)

"This absolutist view of mathematical knowledge is based on two types of assumptions: those of mathematics, concerning the assumption of axioms and definitions, and those of logic concerning the assumption of axioms, rules of inference and the formal language and its syntax. These are local or micro-assumptions. There is also the possibility of global or macro-assumptions, such as whether logical deduction suffices to establish all mathematical truths." (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"[…] mathematics is not just an austere, logical structure of forbidding purity, but also a vital, vibrant instrument for understanding the world, including the workings of our minds, and this aspect of mathematics was all but lost." (Mark Kac,  "Mathematics: Tensions", 1992)

"Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors." (John L Casti, "Reality Rules, The Fundamentals", 1992)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)

"The popular image of mathematics as a collection of precise facts, linked together by well-defined logical paths, is revealed to be false. There is randomness and hence uncertainty in mathematics, just as there is in physics." (Paul Davis, "The Mind of God", 1992)

"The binary logic of modern computers often falls short when describing the vagueness of the real world. Fuzzy logic offers more graceful alternatives." (Bart Kosko & Satoru Isaka, "Fuzzy Logic,” Scientific American Vol. 269, 1993)

"The deep paradox uncovered by AI research: the only way to deal efficiently with very complex problems is to move away from pure logic. [...] Most of the time, reaching the right decision requires little reasoning.[...] Expert systems are, thus, not about reasoning: they are about knowing. [...] Reasoning takes time, so we try to do it as seldom as possible. Instead we store the results of our reasoning for later reference." (Daniel Crevier, "The Tree of Knowledge", 1993)

"The insight at the root of artificial intelligence was that these 'bits' (manipulated by computers) could just as well stand as symbols for concepts that the machine would combine by the strict rules of logic or the looser associations of psychology." (Daniel Crevier, "AI: The tumultuous history of the search for artificial intelligence", 1993)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology." (Stephen J Gould, "This View of Life: In the Mind of the Beholder", "Natural History", Vol. 103, No. 2, 1994)

"Mathematicians apparently don’t generally rely on the formal rules of deduction as they are thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking proofs into intermediate results so that they don’t have to hold too much logic at once. In fact, it is common for excellent mathematicians not even to know the standard formal usage of quantifiers (for all and there exists), yet all mathematicians certainly perform the reasoning that they encode." (William P Thurston, "On Proof and Progress in Mathematics", 1994)

"People have amazing facilities for sensing something without knowing where it comes from (intuition); for sensing that some phenomenon or situation or object is like something else (association); and for building and testing connections and comparisons, holding two things in mind at the same time (metaphor). These facilities are quite important for mathematics. Personally, I put a lot of effort into ‘listening’ to my intuitions and associations, and building them into metaphors and connections. This involves a kind of simultaneous quieting and focusing of my mind. Words, logic, and detailed pictures rattling around can inhibit intuitions and associations." (William P Thurston, "On proof and progress in mathematics", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lan, "Reponses to …",m Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"An intuitive proof allows you to understand why the theorem must be true; the logic merely provides firm grounds to show that it is true." (Ian Stewart, "Concepts of Modern Mathematics",  1995)

"In contemplating natural phenomena, we frequently have to distinguish between effective complexity and logical depth. For example, the apparently complicated pattern of energy levels of atomic nuclei might easily be misattributed to some complex law at the fundamental level, but it is now believed to follow from a simple underlying theory of quarks, gluons, and photons, although lengthy calculations would be required to deduce the detailed pattern from the basic equations. Thus the pattern has a good deal of logical depth and very little effective complexity." (Murray Gell-Mann, "What is Complexity?", Complexity Vol. 1 (1), 1995)

"Music and higher mathematics share some obvious kinship. The practice of both requires a lengthy apprenticeship, talent, and no small amount of grace. Both seem to spring from some mysterious workings of the mind. Logic and system are essential for both, and yet each can reach a height of creativity beyond the merely mechanical." (Frederick Pratter, "How Music and Math Seek Truth in Beauty", Christian Science Monitor, 1995)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Scientists reach their  conclusions  for the damnedest of reasons: intuition, guesses, redirections after wild-goose chases, all combing with a dollop of rigorous observation and logical  reasoning to be sure […] This  messy and personal side of science should not be  disparaged, or covered up, by  scientists for two  major reasons. First, scientists should proudly show this  human face to  display their kinship with all other  modes of creative human thought […] Second, while biases and references often impede understanding, these  mental idiosyncrasies  may  also serve as powerful, if  quirky and personal, guides to solutions." (Stephen J Gould, "Dinosaur in a  Haystack: Reflections in natural  history", 1995)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand.[...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The logic of the emotional mind is associative; it takes elements that symbolize a reality, or trigger a memory of it, to be the same as that reality. That is why similes, metaphors and images speak directly to the emotional mind." (Daniel Goleman, "Emotional Intelligence", 1996)

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematical logic deals not with the truth but only with the game of truth." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Suppose the reasoning centers of the brain can get their hands on the mechanisms that plop shapes into the array and that read their locations out of it. Those reasoning demons can exploit the geometry of the array as a surrogate for keeping certain logical constraints in mind. Wealth, like location on a line, is transitive: if A is richer than B, and B is richer than C, then A is richer than C. By using location in an image to symbolize wealth, the thinker takes advantage of the transitivity of location built into the array, and does not have to enter it into a chain of deductive steps. The problem becomes a matter of plop down and look up. It is a fine example of how the form of a mental representation determines what is easy or hard to think." (Steven Pinker, "How the Mind Works", 1997)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematical truth is found to exceed the proving of theorems and to elude total capture in the confining meshes of any logical net." (John Polkinghorne, "Belief in God in an Age of Science", 1998)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...