15 November 2025

On Set Theory: On Sets (1960-1969)

"Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. [...] The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it [...] the language and notation are those of ordinary informal mathematics. A more important way in which the naive point of view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study." (Paul R Halmos, "Naive Set Theory", 1960)

"A set is formed by the grouping together of single objects into a whole. A set is a plurality thought of as a unit. If these or similar statements were set down as definitions, then it could be objected with good reason that they define idem per idemi or even obscurum per obscurius. However, we can consider them as expository, as references to a primitive concept, familiar to us all, whose resolution into more fundamental concepts would perhaps be neither competent nor necessary." (Felix Hausdorff, "Set Theory", 1962)

"A special role is played in the theory of metric spaces by the class of open spheres within the class of all open sets. The main feature of their relationship is that the open sets coincide with all unions of open spheres, and it follows from this that the continuity of a mapping can be expressed either in terms of open spheres or in terms of open sets, at our convenience." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"In many branches of mathematics - in geometry as well as analysis - it has been found extremely convenient to have available a notion of distance which is applicable to the elements of abstract sets. A metric space (as we define it below) is nothing more than a non-empty set equipped with a concept of distance which is suitable for the treatment of convergent sequences in the set and continuous functions defined on the set." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"It is sometimes said that mathematics is the study of sets and functions. Naturally, this oversimplifies matters; but it does come as close to the truth as an aphorism can." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"The study of sets and functions leads two ways. One path goes down, into the abysses of logic, philosophy, and the foundations of mathematics. The other goes up, onto the highlands of mathematics itself, where these concepts are indispensable in almost all of pure mathematics as it is today." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"It is paradoxical that while mathematics has the reputation of being the one subject that brooks no contradictions, in reality it has a long history of successful living with contradictions. This is best seen in the extensions of the notion of number that have been made over a period of 2500 years. From limited sets of integers, to infinite sets of integers, to fractions, negative numbers, irrational numbers, complex numbers, transfinite numbers, each extension, in its way, overcame a contradictory set of demands." (Philip J Davis,"The Mathematics of Matrices", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"[...] 'information' is not a substance or concrete entity but rather a relationship between sets or ensembles of structured variety." (Walter F Buckley, "Sociology and modern systems theory", 1967)

 "A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"General or point set topology can be thought of as the abstract study of the ideas of nearness and continuity. This is done in the first place by picking out in elementary geometry those properties of nearness that seem to be fundamental and taking them as axioms." (Andrew H Wallace, "Differential Topology: First Steps", 1968)

"In practice, let us note, the determination of sets by means of characterizing criteria runs into difficulty because of the ambiguity of our language. The task of separating the objects belonging to a set from those that do not is often made difficult by the large number of objects of intermediate type." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Infinite sets possess remarkable properties. In studying these properties mathematicians were led to continually perfect their reasoning and to further develop mathematical logic." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Many examples occur in the theory of sets in which the definition of the set is self-contradictory. The study of the question of the conditions under which this takes place leads to deep questions of logic. Consideration of these questions has completely changed the face of the subject." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The very name 'set' leads us to think that any set must contain many elements" (at least two). But this is not the case. In mathematics it is sometimes necessary to examine sets having only one element and sometimes even a set having no elements at all." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Two kinds of sets turn up in geometry. First of all, in geometry we ordinarily talk about the properties of some set of geometric figures. For example, the theorem stating that the diagonals of a parallelogram bisect each other relates to the set of all parallelograms. Secondly, the geometric figures are themselves sets composed of the points occurring within them. We can therefore speak of the set of all points contained within a given circle, of the set of all points within a given cone, etc." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"The modern definition of a function in the context of real numbers is that it is a relationship, usually a formula, by which a correspondence is established between two sets A (the domain) and B (the range) of real numbers in such a manner that to every number in set A there corresponds only one number in set B." (Alan Jeffrey, "Mathematics for Engineers and Scientists", 1969)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Quantum Mechanics (2010-)

"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative propert...