11 November 2025

On Topology: On Cuts

"If to divide a continuum C, cuts which form one or several continua of one dimension suffice, we shall say that C is a continuum of two dimensions; if cuts which form one or several continua of at most two dimensions suffice, we shall say that C is a continuum of three dimen­ sions; and so on." (Henri Poincaré, 1912)

"[...] if to divide a continuum it suffices to consider as cuts a certain number of elements all distinguishable from one another, we say that this continuum is of one dimension·, if, on the contrary, to divide a continuum it is necessary to consider as cuts a system of elements themselves forming one or several continua, we shall say that this continuum is of several dimensions." (Henri Poincaré, 1912)

"This is just the idea given above: to divide space, cuts that are called surfaces are necessary; to divide surfaces, cuts that are called lines are necessary; to divide lines, cuts that are called points are necessary; we can go no further and a point can not be divided, a point not being a continuum. Then lines, which can be divided by cuts which are not continua, will be continua of one dimension; surfaces, which can be divided by continuous cuts of one dimension, will be continua of two dimensions; and finally space, which can be divided by continuous cuts of two dimensions, will be a continuum of three dimensions." (Henri Poincaré, 1912)

"Topology is that branch of mathematics which is interested in the forms of things aside from their size and shape. Two things are said to be topologically equivalent if one can be deformed smoothly into the other without sticking, cutting, or puncturing it in any way. Thus an egg is equivalent to a sphere." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"Geometrical intuition plays an essential role in contemporary algebro-topological and geometric studies. Many profound scientific mathematical papers devoted to multi-dimensional geometry use intensively the 'visual slang' such as, say, 'cut the surface', 'glue together the strips', 'glue the cylinder', 'evert the sphere' , etc., typical of the studies of two and three-dimensional images. Such a terminology is not a caprice of mathematicians, but rather a 'practical necessity' since its employment and the mathematical thinking in these terms appear to be quite necessary for the proof of technically very sophisticated results.(Anatolij Fomenko, "Visual Geometry and Topology", 1994) 

"In the realms of nature it is impossible to predict which way a bifurcation will cut. The outcome of a bifurcation is determined neither by the past history of a system nor by its environment, but only by the interplay of more or less random fluctuations in the chaos of critical destabilization. One or another of the fluctuations that rock such a system will suddenly 'nucleate'. The nucleating fluctuation will amplify with great rapidity and spread to the rest of the system. In a surprisingly short time, it dominates the system’s dynamics. The new order that is then born from the womb of chaos reflects the structural and functional characteristics of the nucleated fluctuation. [...] Bifurcations are more visible, more frequent, and more dramatic when the systems that exhibit them are close to their thresholds of stability - when they are all but choked out of existence." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"[...] there is no area of mathematics where thinking abstractly has paid more handsome dividends than in topology, the study of those properties of geometrical objects that remain unchanged when we deform or distort them in a continuous fashion without tearing, cutting, or breaking them." (John L Casti, "Five Golden Rules", 1995)

"Two figures which can be transformed into one other by continuous deformations without cutting and pasting are called homeomorphic. […] The definition of a homeomorphism includes two conditions: continuous and one-to-one correspondence between the points of two figures. The relation between the two properties has fundamental significance for defining such a paramount concept as the dimension of space." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"It is a curious fact that if you draw an endless line on a piece of paper so that it cuts itself any number of times (but never cuts itself more than once at the same point), then you can color the resulting regions using only two colors without any adjoining regions being the same color. [...] Venn diagrams also possess this property, but for a separate reason, which at first sight seems to be nicely demonstrated by induction." (Anthony W F Edwards, "Cogwheels of the mind: The story of Venn diagrams", 2004)

"Topology is the mathematical study of properties of objects which are preserved through deformations, twistings, and stretchings but not through breaks or cuts." (David Robinson & David Goforth, "The Topology of the 2×2 Games: A New Periodic Table", 2005)

"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Topology: On Cuts

"If to divide a continuum C, cuts which form one or several continua of one dimension suffice, we shall say that C is a continuum of tw...