06 July 2021

On Algorithms II

"The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"The burgeoning field of computer science has shifted our view of the physical world from that of a collection of interacting material particles to one of a seething network of information. In this way of looking at nature, the laws of physics are a form of software, or algorithm, while the material world - the hardware - plays the role of a gigantic computer." (Paul C W Davies, "Laying Down the Laws", New Scientist, 2007)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Programming is a science dressed up as art, because most of us don’t understand the physics of software and it’s rarely, if ever, taught. The physics of software is not algorithms, data structures, languages, and abstractions. These are just tools we make, use, and throw away. The real physics of software is the physics of people. Specifically, it’s about our limitations when it comes to complexity and our desire to work together to solve large problems in pieces. This is the science of programming: make building blocks that people can understand and use easily, and people will work together to solve the very largest problems." (Pieter Hintjens, "ZeroMQ: Messaging for Many Applications", 2012)

"These nature-inspired algorithms gradually became more and more attractive and popular among the evolutionary computation research community, and together they were named swarm intelligence, which became the little brother of the major four evolutionary computation algorithms." (Yuhui Shi, "Emerging Research on Swarm Intelligence and Algorithm Optimization", Information Science Reference, 2014)

"Again, classical statistics only summarizes data, so it does not provide even a language for asking [a counterfactual] question. Causal inference provides a notation and, more importantly, offers a solution. As with predicting the effect of interventions [...], in many cases we can emulate human retrospective thinking with an algorithm that takes what we know about the observed world and produces an answer about the counterfactual world." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"An algorithm, meanwhile, is a step-by-step recipe for performing a series of actions, and in most cases 'algorithm' means simply 'computer program'." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Each of us is sweating data, and those data are being mopped up and wrung out into oceans of information. Algorithms and large datasets are being used for everything from finding us love to deciding whether, if we are accused of a crime, we go to prison before the trial or are instead allowed to post bail. We all need to understand what these data are and how they can be exploited." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...