"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative property, though an equally objective one. Note, however, that this conclusion follows only under the realist interpretation of probability as the measure of possibility. If, by contrast, one adopts the subjectivist or Bayesian conception of probability as the measure of subjective uncertainty, then randomness is only in the eye of the beholder." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)
"The objectivist view is that probabilities are real aspects of the universe - propensities of objects to behave in certain ways - rather than being just descriptions of an observer’s degree of belief. For example, the fact that a fair coin comes up heads with probability 0.5 is a propensity of the coin itself. In this view, frequentist measurements are attempts to observe these propensities. Most physicists agree that quantum phenomena are objectively probabilistic, but uncertainty at the macroscopic scale - e.g., in coin tossing - usually arises from ignorance of initial conditions and does not seem consistent with the propensity view." (Stuart J Russell & Peter Norvig, "Artificial Intelligence: A Modern Approach", 2010)
"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)
"The invariance of physical laws with respect to position or orientation (i.e., the symmetry of space) gives rise to conservation laws for linear and angular momentum. Sometimes the implications of symmetry invariance are far more complicated or sophisticated than might at first be supposed; the invariance of the forces predicted by electromagnetic theory when measurements are made in observation frames moving uniformly at different speeds (inertial frames) was an important clue leading Einstein to the discovery of special relativity. With the advent of quantum mechanics, considerations of angular momentum and spin introduced new symmetry concepts into physics. These ideas have since catalyzed the modern development of particle theory." (George B Arfken et al, "Mathematical Methods for Physicists: A comprehensive guide", 2013)
"Ironically, conventional quantum mechanics itself involves a vast expansion of physical reality, which may be enough to avoid Einstein Insanity. The equations of quantum dynamics allow physicists to predict the future values of the wave function, given its present value. According to the Schrödinger equation, the wave function evolves in a completely predictable way. But in practice we never have access to the full wave function, either at present or in the future, so this 'predictability' is unattainable. If the wave function provides the ultimate description of reality - a controversial issue!" (Frank Wilczek, "Einstein’s Parable of Quantum Insanity", 2015)
"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)
"Random means without reason - unpredictable - lawless. That little word random describes a key difference between ordinary classical mechanics and quantum mechanics. […] In classical physics only ignorance of the fine details or lack of control over them causes statistical randomness […] In principle, though not in practice, randomness is absent from classical physics." (Hans C von Baeyer, "QBism: The future of quantum physics", 2016)
"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)
"Complex numbers seem to be fundamental for the description of the world proposed by quantum mechanics. In principle, this can be a source of puzzlement: Why do we need such abstract entities to describe real things? One way to refute this bewilderment is to stress that what we can measure is essentially real, so complex numbers are not directly related to observable quantities. A more philosophical argument is to say that real numbers are no less abstract than complex ones, the actual question is why mathematics is so effective for the description of the physical world." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
"It is particularly helpful to use complex numbers to model periodic phenomena, especially to operate with phase differences. Mathematically, one can treat a physical quantity as being complex, but address physical meaning only to its real part. Another possibility is to treat the real and imaginary parts of a complex number as two related" (real) physical quantities. In both cases, the structure of complex numbers is useful to make calculations more easily, but no physical meaning is actually attached to complex variables." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88" (1), 2020)
"What is essentially different in quantum mechanics is that it deals with complex quantities" (e.g. wave functions and quantum state vectors) of a special kind, which cannot be split up into pure real and imaginary parts that can be treated independently. Furthermore, physical meaning is not attached directly to the complex quantities themselves, but to some other operation that produces real numbers" (e.g. the square modulus of the wave function or of the inner product between state vectors)." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
No comments:
Post a Comment