13 November 2025

On Mechanics (1980-1989)

"The fact that network theory evolved from the study of idealized electrical systems rather than from the study of idealized mechanical systems is a matter of history, not of necessity." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)

"Thus, in physics, entropy is associated with the possibility of converting thermal energy into mechanical energy. If the entropy does not change during a process, the process is reversible. If the entropy increases, the available energy decreases. Statistical mechanics interprets an increase of entropy as a decrease in order or, if we wish, as a decrease in our knowledge." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, Evolutionary Economics, 1981)

"The ‘eyes of the mind’ must be able to see in the phase space of mechanics, in the space of elementary events of probability theory, in the curved four-dimensional space-time of general relativity, in the complex infinite dimensional projective space of quantum theory. To comprehend what is visible to the ‘actual eyes’, we must understand that it is only the projection of an infinite dimensional world on the retina." (Yuri I Manin, "Mathematics and Physics", 1981)

"Probability plays a central role in many fields, from quantum mechanics to information theory, and even older fields use probability now that the presence of 'noise' is officially admitted. The newer aspects of many fields start with the admission of uncertainty." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"It can be argued that in trying to see behind the formal predictions of quantum theory we are just making trouble for ourselves. Was not precisely this the lesson that had to be learned before quantum mechanics could be constructed, that it is futile to try to see behind the observed phenomena?" (John S Bell, "Einstein-Podolsky-Rosen Experiments" [in "Speakable and Unspeakable in Quantum Mechanics"], 1987)

"[…] our present picture of physical reality, particularly in relation to the nature of time, is due for a grand shake up - even greater, perhaps, than that which has already been provided by present-day relativity and quantum mechanics." (Roger Penrose, "The Emperor’s New Mind", 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Mechanics (2010-)

"Systems thinking, in contrast, focuses on how the thing being studied interacts with the other constituents of the system - a set of e...