"If the attitude of quantum mechanics is correct, in the strong sense that a description of the substructure underlying experience more complete than the one it provides is not possible, then there is no substantive physical world, in the usual sense of this term. The conclusion here is not the weak conclusion that there may not be a substantive physical world but rather that there definitely is not a substantive physical world." (Henry P Stapp, "S-Matrix Interpretation of Quantum Theory", 1970)
"Many cumbersome developments in the standard treatments of mechanics can be simplified and better understood when formulated with modern conceptual tools, as in the well-known case of the use of the 'universal' definition of tensor products of vector spaces to simplify some of the notational excesses of tensor analysis as traditionally used in relativity theory" (Saunders Mac Lane, "Hamiltonian Mechanics and Geometry", The American Mathematical Monthly Vol. 77 (6), 1970)
"[the physical world, according to quantum mechanics, is] not a structure built out oi independently existing unanalyzable entities, but lather a web of relationships between elements whose meanings arise wholly from their relationships to the whole." (Henry P Stapp, "S-Matrix Interpretation of Quantum Theory", 1970)
"You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage." (John von Neumann) [Suggesting to Claude Shannon a name for his new uncertainty function, see Scientific American Vol. 225 (3), 1971]
"A physical theory must accept some actual data as inputs and must be able to generate from them another set of possible data (the output) in such a way that both input and output match the assumptions of the theory - laws, constraints, etc. This concept of matching involves relevance: thus boundary conditions are relevant only to field-like theories such as hydrodynamics and quantum mechanics. But matching is more than relevance: it is also logical compatibility." (Mario Bunge, "Philosophy of Physics", 1973)
"May the universe in some strange sense be brought into being by the participation of those who participate? The vital act is the act of participation. Participator is the incontrovertible new concept given by quantum mechanics. It strikes down the term observer of classical theory, the man who stands safely behind the thick glass wall and watches what goes on without taking part It can't be done, quantum mechanics says." (John A Wheeler et al, "Gravitation", 1973)
"Of course, we know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude, "The Coming of Age of the Cell", Science, 1974)
"Of course, we know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude,"The Coming of Age of the Cell", Science, 1975)
"Quantum mechanics also uses statistics, but there is a very big difference between quantum mechanics and Newtonian physics. In quantum mechanics, there is no way to predict individual events This is the startling lesson that experiments in the subatomic realm have taught us. [...] Quantum physics abandons the laws which govern individual events and states directly the statistical laws which govern collections of events. Quantum mechanics can tell us how a group of particles will behave, but the only thing that it can say about an individual particle is how it probably will behave. Probability is one of the major characteristics of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)
"The 'complete description' that quantum theory claims the wave function to be is a description of physical reality (as in physics). No matter what we are feeling, or thinking about, or looking at, the wave function describes as completely as possible where and when we are doing it. [...] Since the wave function is thought to be a complete description of physical reality and since that which the wave function describes is idea-like as well as matter-like, then physical reality must be both idea-like and matter-like. In other words, the world cannot be as it appears. Incredible as it sounds, this is the conclusion of the orthodox view of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)
"The conceptual framework of quantum mechanics, supported by massive volumes of experimental data, forces contemporary physicists to express themselves in a manner that sounds, even to the uninitiated, like the language of mystics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)
"There is another fundamental difference between the old physics and the new physics. The old phvsics assumes that there is an external world which exists apart from us. It further assumes that we can observe measure and speculate about the external world without changing it. According to the old physics the external world is indifferent to us and to our needs. [...] The new physics, quantum mechanics, tells us clearly that it is not possible to observe reality without changing it. If we observe a certain particle collision experiment, not only do we have no way of proving that the result would have been the same if we had not been watching it, all that we know indicates that it would not have been the same, because the result that we got was affected by the fact that we were looking for it." (Gary Zukav, "The Dancing Wu Li Masters", 1979)
No comments:
Post a Comment