"If geometry is to serve as a model for the treatment of physical axioms, we shall try first by a small number of axioms to include as large a class as possible of physical phenomena, and then by adjoining new axioms to arrive gradually at the more special theories. […] The mathematician will have also to take account not only of those theories coming near to reality, but also, as in geometry, of all logically possible theories. We must be always alert to obtain a complete survey of all conclusions derivable from the system of axioms assumed." (David Hilbert, 1900)
"If we study the history of science we see happen two inverse phenomena […] Sometimes simplicity hides under complex appearances; sometimes it is the simplicity which is apparent, and which disguises extremely complicated realities. […] No doubt, if our means of investigation should become more and more penetrating, we should discover the simple under the complex, then the complex under the simple, then again the simple under the complex, and so on, without our being able to foresee what will be the last term. We must stop somewhere, and that science may be possible, we must stop when we have found simplicity. This is the only ground on which we can rear the edifice of our generalizations." (Henri Poincaré, "Science and Hypothesis", 1901)
"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"Statistics may rightly be called the science of averages. […] Great numbers and the averages resulting from them, such as we always obtain in measuring social phenomena, have great inertia. […] It is this constancy of great numbers that makes statistical measurement possible. It is to great numbers that statistical measurement chiefly applies." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"The state of a system at a given moment depends on two things - its initial state, and the law according to which that state varies. If we know both this law and this initial state, we have a simple mathematical problem to solve, and we fall back upon our first degree of ignorance. Then it often happens that we know the law and do not know the initial state. It may be asked, for instance, what is the present distribution of the minor planets? We know that from all time they have obeyed the laws of Kepler, but we do not know what was their initial distribution. In the kinetic theory of gases we assume that the gaseous molecules follow rectilinear paths and obey the laws of impact and elastic bodies; yet as we know nothing of their initial velocities, we know nothing of their present velocities. The calculus of probabilities alone enables us to predict the mean phenomena which will result from a combination of these velocities. This is the second degree of ignorance. Finally it is possible, that not only the initial conditions but the laws themselves are unknown. We then reach the third degree of ignorance, and in general we can no longer affirm anything at all as to the probability of a phenomenon. It often happens that instead of trying to discover an event by means of a more or less imperfect knowledge of the law, the events may be known, and we want to find the law; or that, instead of deducing effects from causes, we wish to deduce the causes." (Henri Poincaré, "Science and Hypothesis", 1902)
"[…] we can only study Nature through our senses - that is […] we can only study the model of Nature that our senses enable our minds to construct; we cannot decide whether that model, consistent though it be, represents truly the real structure of Nature; whether, indeed, there be any Nature as an ultimate reality behind its phenomena." (William C Dampier, "The Recent Development of Physical Science", 1904)
"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)
"We can only study Nature through our senses – that is […] we can only study the model of Nature that our senses enable our minds to construct; we cannot decide whether that model, consistent though it be, represents truly the real structure of Nature; whether, indeed, there be any Nature as an ultimate reality behind its phenomena." (Sir William C Dampier, "The Recent Development of Physical Science", 1904)
"Little can be understood of even the simplest phenomena of nature without some knowledge of mathematics, and the attempt to penetrate deeper into the mysteries of nature compels simultaneous development of the mathematical processes." (J W Young, "The Teaching of Mathematics", 1907)
"So completely is nature mathematical that some of the more exact natural sciences, in particular astronomy and physics, are in their theoretic phases largely mathematical in character, while other sciences which have hitherto been compelled by the complexity of their phenomena and the inexactitude of their data to remain descriptive and empirical, are developing towards the mathematical ideal, proceeding upon the fundamental assumption that mathematical relations exist between the forces and the phenomena, and that nothing short, of the discovery and formulations of these relations would constitute definitive knowledge of the subject. Progress is measured by the closeness of the approximation to this ideal formulation." (Jacob W A Young, "The Teaching of Mathematics", 1907)
"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908)
"In fact, we only attain laws by violating nature, by isolating more or less artificially a phenomenon from the whole, by checking those influences which would have falsified the observation. Thus the law cannot directly express reality. The phenomenon as it is envisaged by it, the ‘pure’ phenomenon, is rarely observed without our intervention, and even with this it remains imperfect, disturbed by accessory phenomena. […] Doubtless, if nature were not ordered, if it did not present us with similar objects, capable of furnishing generalized concepts, we could not formulate laws." (Emile Meyerson, "Identity and Reality", 1908)
"The scientific worker has elected primarily to know, not do. He does not directly seek, like the practical man, to realize the ideal of exploiting nature and controlling life – though he makes this more possible; he seeks rather to idealize – to conceptualize – the real, or at least those aspects of reality that are available in his experience. He thinks more of lucidity and formulae than of loaves and fishes. He is more concerned with knowing Nature than with enjoying her. His main intention is to describe the sequences in Nature in the simplest possible formulae, to make a working thought-model of the known world. He would make the world translucent, not that emotion may catch the glimmer of the indefinable light that shines through, but for other reasons – because of his inborn inquisitiveness, because of his dislike of obscurities, because of his craving for a system – an intellectual system in which phenomena are at least provisionally unified." (Sir John A Thomson," Introduction to Science", 1911)
"[…] there is a special relationship, a profound affinity between mathematics and tektology. Mathematical laws do not refer to a particular area of natural phenomena, as the laws of the other, special, sciences do, but to each and all phenomena, considered merely in their quantitative aspect; mathematics is in its own way universal, like tektology." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)
No comments:
Post a Comment