"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’." (Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)
"If to-day you ask a physicist what he has finally made out the æther or the electron to be, the answer will not be a description in terms of billiard balls or fly-wheels or anything concrete; he will point instead to a number of symbols and a set of mathematical equations which they satisfy. What do the symbols stand for? The mysterious reply is given that physics is indifferent to that; it has no means of probing beneath the symbolism. To understand the phenomena of the physical world it is necessary to know the equations which the symbols obey but not the nature of that which is being symbolised [...]" (Arthur S Eddington, "Science and the Unseen World", 1929)
"[…] the main object of physical science is not the provision of pictures, but in the formulation of laws governing phenomena and the application of these laws to the discovery of new phenomena. If a picture exists, so much the better; but whether a picture exists or not is a matter of only secondary importance. In the case of atomic phenomena no picture can be expected to exist in the usual sense of the word ‘picture’, by which is meant to model functioning essentially on classical lines. One may extend the meaning of the word ‘picture’ to include any way of looking at the fundamental laws which make their self-consistency obvious. With this extension, one may acquire a picture of atomic phenomena by becoming familiar with the laws of quantum theory." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)
"[…] an independent reality in the ordinary physical sense can neither be ascribed to the phenomena nor to the agencies of observation." (Niels H D Bohr, "Atomic Theory and the Description of Nature", 1931)
"Science has two main functions in civilization. One is to give man a picture of the world phenomena, the most accurate and complete picture possible. The other is to provide him with the means of controlling his environment and his destiny." (Julian Huxley, "What Dare I Think?", 1931)
"The fundamental concepts of physical science, it is now understood, are abstractions, framed by our mind, so as to bring order to an apparent chaos of phenomena." (Sir William C Dampier, "A History of Science and its Relations with Philosophy & Religion", 1931)
"It goes without saying that the laws of nature are in themselves independent of the properties of the instruments with which they are measured. Therefore in every observation of natural phenomena we must remember the principle that the reliability of the measuring apparatus must always play an important role." (Max Planck,"Where is Science Going?", 1932)
"The making of models or pictures to explain mathematical formulae and the phenomena they describe is not a step towards, but a step away from reality; it is like making graven images of a spirit." (Sir James H Jeans, "The Mysterious Universe", 1932)
"A scientific observation is always a committed observation. It confirms or denies one’s preconceptions, one’s first ideas, one’s plan of observation. It shows by demonstration. It structures the phenomenon. It transcends what is close at hand. It reconstructs the real after having reconstructed its representation." (Gaston Bachelard, "The New Scientific Spirit", 1934)
"As soon as we inquire into the reasons for the phenomena, we enter the domain of theory, which connects the observed phenomena and traces them back to a single ‘pure’ phenomena, thus bringing about a logical arrangement of an enormous amount of observational material." (Georg Joos, "Theoretical Physics", 1934)
"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)
"At the beginning of its existence as a science, biology was forced to take cognizance of the seemingly boundless variety of living things, for no exact study of life phenomena was possible until the apparent chaos of the distinct kinds of organisms had been reduced to a rational system. Systematics and morphology, two predominantly descriptive and observational disciplines, took precedence among biological sciences during the eighteenth and nineteenth centuries. More recently physiology has come to the foreground, accompanied by the introduction of quantitative methods and by a shift from the observationalism of the past to a predominance of experimentation." (Theodosius Dobzhansky, "Genetics and the Origin of Species", 1937)
"The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination." (Edwin P Hubble, 1938)
No comments:
Post a Comment