10 July 2021

On Phenomena (1950-1959)

"Every organism represents a system, by which term we mean a complex of elements in mutual interaction. From this obvious statement the limitations of the analytical and summative conceptions must follow. First, it is impossible to resolve the phenomena of life completely into elementary units; for each individual part and each individual event depends not only on conditions within itself, but also to a greater or lesser extent on the conditions within the whole, or within superordinate units of which it is a part. Hence the behavior of an isolated part is, in general, different from its behavior within the context of the whole. [...] Secondly, the actual whole shows properties that are absent from its isolated parts." (Ludwig von Bertalanffy, "Problems of Life", 1952)

"The principle of complementarity states that no single model is possible which could provide a precise and rational analysis of the connections between these phenomena [before and after measurement]. In such a case, we are not supposed, for example, to attempt to describe in detail how future phenomena arise out of past phenomena. Instead, we should simply accept without further analysis the fact that future phenomena do in fact somehow manage to be produced, in a way that is, however, necessarily beyond the possibility of a detailed description. The only aim of a mathematical theory is then to predict the statistical relations, if any, connecting the phenomena." (David Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables", 1952)

"Multiple equilibria are not necessarily useless, but from the standpoint of any exact science the existence of a uniquely determined equilibrium is, of course, of the utmost importance, even if proof has to be purchased at the price of very restrictive assumptions; without any possibility of proving the existence of (a) uniquely determined equilibrium - or at all events, of a small number of possible equilibria - at however high a level of abstraction, a field of phenomena is really a chaos that is not under analytical control." (Joseph A Schumpeter, "History of Economic Analysis", 1954)

"The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity." (Andrey Kolmogorov, "Limit Distributions for Sums of Independent Random Variables", 1954)

"The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work" (John Von Neumann, "Method in the Physical Sciences", 1955)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956)

"The problem of the transformation of images is of great importance in the theory of economic development. […] The problem here is that of the initiation and imitation of superior processes. Both these phenomena require transformation of the image; a new process always starts as a new image, as a new idea. The process itself is merely a form of transcription of the new image." (Kenneth E Boulding, "The Image: Knowledge in life and society", 1956)

"Two possible approaches to the organization of general systems theory suggest themselves, which are to be thought of as complementary rather than competitive, or at least as two roads each of which is worth exploring. The first approach is to look over the empirical universe and to pick out certain general phenomena which are found in many different disciplines, and to seek to build up general theoretical models relevant to these phenomena. The second approach is to arrange the empirical fields in a hierarchy of complexity of organization of their basic 'individual' or unit of behavior, and to try to develop a level of abstraction appropriate to each." (Kenneth E. Boulding, General Systems Theory - The Skeleton of Science, Management Science Vol. 2 (3), 1956)

"We dissect nature along the lines laid down by our native languages. The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds - and this means largely by the linguistic systems in our minds. […] We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated." (Benjamin L Whorf, 1956)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits'  - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"The heart of all major discoveries in the physical sciences is the discovery of novel methods of representation and so of fresh techniques by which inferences can be drawn - and drawn in ways which fit the phenomena under investigation." (Stephen Toulmin, "The Philosophy of Science", 1957)

"The main interest of physical statistics lies in fact not so much in the distribution of the phenomena in space, but rather in their succession in time." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)

"The progress of science has always been the result of a close interplay between our concepts of the universe and our observations on nature. The former can only evolve out of the latter and yet the latter is also conditioned greatly by the former. Thus in our exploration of nature, the interplay between our concepts and our observations may sometimes lead to totally unexpected aspects among already familiar phenomena." (Tsung-Dao Lee, "Weak Interactions and Nonconservation of Parity", [Nobel lecture] 1957)

"Our craving for generality has [as one] source […] our preoccupation with the method of science. I mean the method the method of reducing the explanation of natural phenomena to the smallest possible number of primitive natural laws; and, in mathematics, of unifying the treatment of different topics by using a generalization. Philosophers constantly see the method of science before their eyes, and are irresistibly tempted to ask and answer in the way science does. This tendency is the real source of metaphysics, and leads the philosopher into complete darkness. I want to say here that it can never be our job to reduce anything to anything, or to explain anything. Philosophy really is ‘purely descriptive’." (Ludwig Wittgenstein, "The Blue and Brown Books", 1958)

"It is perhaps possible to distinguish two different aspects of numeracy […]. On the one hand is an understanding of the scientific approach to the study of phenomena - observation, hypothesis, experiment, verification. On the other hand, there is the need in the modern world to think quantitatively, to realise how far our problems are problems of degree even when they appear as problems of kind." (Sir Geoffrey Crowther, "A Report of the Central Advisory Committee for Education", 1959)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...