"Mathematics has given us dazzling insights into the power of exponential growth and how the same patterns recur in numbers, regardless of the phenomena being observed." (Richar Koch, "The Power Laws", 2000)
"Chaos theory revealed that simple nonlinear systems could behave in extremely complicated ways, and showed us how to understand them with pictures instead of equations. Complexity theory taught us that many simple units interacting according to simple rules could generate unexpected order. But where complexity theory has largely failed is in explaining where the order comes from, in a deep mathematical sense, and in tying the theory to real phenomena in a convincing way. For these reasons, it has had little impact on the thinking of most mathematicians and scientists."
"Our world resonates with patterns. The waxing and waning of the moon. The changing of the seasons. The microscopic cell structure of all living things have patterns. Perhaps that explains our fascination with prime numbers which are uniquely without pattern. Prime numbers are among the most mysterious phenomena in mathematics." (Manindra Agrawal, 2003)
"The concept of a random walk is simple but rich for its many applications, not only in finance but also in physics and the description of natural phenomena. It is arguably one of the most founding concepts in modern physics as well as in finance, as it underlies the theories of elementary particles, which are the building blocks of our universe, as well as those describing the complex organization of matter around us." (Didier Sornette, "Why Stock Markets Crash: Critical Events in Complex Systems", 2003)
"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Bialynicki-Birula & Iwona Bialynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)
"Ecology, on the other hand, is messy. We cannot find anything deserving of the term law, not because ecology is less developed than physics, but simply because the underlying phenomena are more chaotic and hence less amenable to description via generalization." (Lev Ginzburg & Mark Colyvan," Ecological Orbits: How Planets Move and Populations Grow", 2004)
"Group theory is a branch of mathematics that describes the properties of an abstract model of phenomena that depend on symmetry. Despite its abstract tone, group theory provides practical techniques for making quantitative and verifiable predictions about the behavior of atoms, molecules and solids." (Arthur M Lesk, "Introduction to Symmetry and Group Theory for Chemists", 2004)
"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)
"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)
"But ignorance exists in the map, not in the territory. If I am ignorant about a phenomenon, that is a fact about my own state of mind, not a fact about the phenomenon itself. A phenomenon can seem mysterious to some particular person. There are no phenomena which are mysterious of themselves. To worship a phenomenon because it seems so wonderfully mysterious, is to worship your own ignorance." (Eliezer Yudkowsky, "Mysterious Answers To Mysterious Questions" 2007)
"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)
"In order to understand how mathematics is applied to understanding of the real world it is convenient to subdivide it into the following three modes of functioning: model, theory, metaphor. A mathematical model describes a certain range of phenomena qualitatively or quantitatively. […] A (mathematical) metaphor, when it aspires to be a cognitive tool, postulates that some complex range of phenomena might be compared to a mathematical construction." (Yuri I Manin," Mathematics as Metaphor: Selected Essays of Yuri I. Manin" , 2007)
"Complexity Theory is concerned with the study of the intrinsic complexity of computational tasks. Its 'final' goals include the determination of the complexity of any well-defined task. Additional goals include obtaining an understanding of the relations between various computational phenomena (e.g., relating one fact regarding computational complexity to another). Indeed, we may say that the former type of goal is concerned with absolute answers regarding specific computational phenomena, whereas the latter type is concerned with questions regarding the relation between computational phenomena." (Oded Goldreich, "Computational Complexity: A Conceptual Perspective", 2008)
"Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence." (Reva B Brown & Mark Saunders, "Dealing with Statistics: What You Need to Know", 2008)
"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’." (Vladimir G Ivancevic & Tijana T Ivancevic, "Quantum Leap", 2008)
"For me, as I later came to say, cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "The Cybernetics of Snow Drifts 1948", 2009)
No comments:
Post a Comment