10 July 2021

On Phenomena (2010-2019)

"In order to deal with these phenomena, we abstract from details and attempt to concentrate on the larger picture - a particular set of features of the real world or the structure that underlies the processes that lead to the observed outcomes. Models are such abstractions of reality. Models force us to face the results of the structural and dynamic assumptions that we have made in our abstractions." (Bruce Hannon and Matthias Ruth, "Dynamic Modeling of Diseases and Pests", 2009)

"[...] diverse, connected, interdependent entities whose behavior is determined by rules, which may adapt, but need not. The interactions of these entities often produce phenomena that are more than the parts. These phenomena are called emergent." (Scott E Page, "Diversity and Complexity", 2010)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "Partial Memories: Sketches from an Improbable Life", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"A theory is a set of deductively closed propositions that explain and predict empirical phenomena, and a model is a theory that is idealized." (Jay Odenbaugh, "True Lies: Realism, Robustness, and Models", Philosophy of Science, Vol. 78, No. 5, 2011)

"Deep ecology does not separate humans - or anything else-from the natural environment. It sees the world not as a collection of isolated objects, but as a network of phenomena that are fundamentally interconnected and interdependent. Deep ecology recognizes the intrinsic value of all living beings and views humans as just one particular strand in the web of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Mathematical abstraction is the process of considering and manipulating op­erations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content con­nected to particular applications. […] abstraction is the process of passing from things to ideas, properties and relations, to properties of relations and relations of properties, to properties of relations between properties, etc. Being a fundamental thinking process, abstraction has two faces: a logical face and evidently a psychological aspect that is the target of cognitive sciences." (Hourya B Sinaceur,"Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

"Shallow ecology is anthropocentric, or human-centered. It views humans as above or outside of nature, as the source of all value, and ascribes only instrumental, or ‘use’, value to nature. Deep ecology does not separate humans - or anything else-from the natural environment. It sees the world not as a collection of isolated objects, but as a network of phenomena that are fundamentally interconnected and interdependent. Deep ecology recognizes the intrinsic value of all living beings and views humans as just one particular strand in the web of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"One of the roles of mathematics is to explain phenomena in the world around us, especially phenomena that crop up in many different places. If a similar idea relates to many different situations, mathematics swoops in and tries to find an overarching theory that unifies those situations and enables us to better understand the things they have in common." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Symbols (2010-)

"In natural language, even the most carefully chosen words drag along concealed meanings that have the power to manipulate reasoning. [...