06 December 2025

On Connectedness (Math)

"Formally, a Cantor set is defined as a set that is totally disconnected, closed, and perfect. A totally disconnected set is a set that contains no intervals and therefore has no interior points. A closed set is one that contains all its boundary elements. (A boundary element is an element that contains elements both inside and outside the set in arbitrarily small neighborhoods.) A perfect set is a nonempty set that is equal to the set of its accumulation points. All three conditions are met by our middle-third - erasing construction, the original Cantor set." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990) 

"When we think of π, let’s not always think of circles. It is related to all the odd whole numbers. It also is connected to all the whole numbers that are not divisible by the square of a prime. And it is part of an important formula in statistics. These are just a few of the many places where it appears, as if by magic. It is through such astonishing connections that mathematics reveals its unique and beguiling charm." (Sherman K Stein, "Strength in Numbers", 1996)

"The important graphs are the ones where some things are not connected to some other things. When the unenlightened ones try to be profound, they draw endless verbal comparisons between this topic, and that topic, which is like this, which is like that; until their graph is fully connected and also totally useless." (Eliezer S Yudkowsky,  "Mysterious Answers to Mysterious Questions", 2007)

"The most naive branch of combinatorics is graph theory, a subject that is visual and easily grasped, yet rich in connections with other parts of mathematics." (John Stillwell, "Mathematics and Its History", 2010)

"In mathematics, pendulums stimulated the development of calculus through the riddles they posed. In physics and engineering, pendulums became paradigms of oscillation. […] In some cases, the connections between pendulums and other phenomena are so exact that the same equations can be recycled without change. Only the symbols need to be reinterpreted; the syntax stays the same. It’s as if nature keeps returning to the same motif again and again, a pendular repetition of a pendular theme. For example, the equations for the swinging of a pendulum carry over without change to those for the spinning of generators that produce alternating current and send it to our homes and offices. In honor of that pedigree, electrical engineers refer to their generator equations as swing equations." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"So there is a lot to be said for following one’s curiosity in mathematics. It often has scientific and practical payoff s that can’t be foreseen. It also gives mathematicians great pleasure for its own sake and reveals hidden connections between different parts of mathematics." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Neighborhoods (From Fiction to Science-fiction)

"The limit of man's knowledge in any subject possesses a high interest which is perhaps increased by its close neighbourhood to...